FILE COPY

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

PREDICTIVE VALIDATION OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB) FORMS 8, 9, AND 10 AGAINST PERFORMANCE IN 100 NAVY SCHOOLS

Stephanie Booth-Kewley
Paul P. Foley
Leonard Swanson

Reviewed by James R. McBride

Approved by Martin F. Wiskoff

Released by J. W. Renard Captain, U.S. Navy Commanding Officer

SECURITY CLASSIFICATION OF THIS PAGE

	RE	PORT DOCL	JME	NTATION P	AGE			
ONCLASSIFIED	IN RESTRICT	VE MARKINGS	SECURITY CLASSIFICATIO	28 DECLASSIFICATION/DOWNGRADING SCHEDULE				
3 DISTRIBUTION AVAILABILITY OF REPORT Approved for public re	ed.		L	NPRDC T	ON REPORT NUMBERIS) R 85— IN REPORT NUMBERIS)			
Navy Personnel Resea	rch and De	evelopment (Cen	ter			Code 62	
San Diego, CA 92152	-6800	74 NAME OF MONITO	RING O	RGANIZATION		76 ADI	DRESS/CRy, State and	EIP Codel
Be NAME OF FUNDING SPONSORING ORGANIZ	ATION	<u> </u>		Bo Office SYMBOL	Bc ADDRESS (CA)	State and	LIP Cades	
Chief of Naval Operat Implementation Branc		ed Programs	S	OP-135L	Wash	ingto	on, DC 2035	50
9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	TO SOURCE OF FUNE	DING NUMBERS			L			
IDENTIFICATION NUMBER	PROGRAM ELEMENT	MO		PROJECT NO			TASK NO	WR B 2708
PREDICTIVE VALIDA (ASVAB) FORMS 8, 9,								BATTERY
Booth-Kewley, Stephan	nie, Foley,	Paul P., and	d Sw					
Final	FROM	oct 80, Oct	<u>t</u> 32	14 DATE OF REPORT / 1984 D	ecember		16 PAGE COL	Mt
Supplement availabl	e from NF	RDC Code 6	2.					
17 COSATI CODES FIELD GROUP SUB GROUP 1.7.5 0.9	Armed S	Services Voc 110; test val	atio	onal Aptitud	de Battery		SVAB); AS	VAB Forms
-This predictive v Services Vocational Apselection and classific cients between the AS (AFQT), and the Nav Electricity and Electricity and Electricity and Electricity services with suffitechnical school performance in	ptitude Ba cation of c SVAB pred y school s onics (BE/I icient dat ormance re	ttery (ASVA) enlisted pers lictorsindividual selector com E) school san ta. In gene easonably we	B) F sonr vidu npos nple eral ell.	forms 8, 9, and Bivarial al tests, the siteswere es. Expecta, the opera However, ially improv	and 10, use the and me Armed 1 computed ncy tables ational Nathe analysie prediction	ed signification of the second	nce Octob le correlates Qualific 47 "A" ar e construct composites dentified t	er 1980 for tion coeffi- cation Test ad 53 Basic ted for the predicted two schools
20 DETRIUTON AVAILABLITY OF ABETRACT	SAME VERP	onc use	RS.	JY ARSTRACT SECU	RITY CLASSIFICATION	N	UNCLA	SSIFIED
220 NAME OF RESPONSELE INDIVIOUAL Stephanie Booth-Ke				276 TELEPHONE (m (619) 2	25-2181		23± omce small Code 6	OL .

FOREWORD

This research was conducted within work unit WRB2708 (Armed Services Vocational Aptitude Battery (ASVAB) Development and Validation) and was funded by the Enlisted Programs Implementation Branch (OP-135L) of the Chief of Naval Operations (MIPR N0002282 WR5900L). It was carried out in response to a request from the Classification Training Incentive Division of the Naval Military Personnel Command (NMPC-48) to determine the validity of the ASVAB selection criteria for Navy technical schools.

Results are intended for use by NMPC-48 and Navy technical school personnel as well as by the research community. This investigation represents part of an ongoing effort to assure the optimal use of human resources in the Navy by validating selection and classification standards against performance measures.

J. W. RENARD Captain, U.S. Navy Commanding Officer J. W. TWEEDDALE Technical Director

SUMMARY

Problem

The Armed Services Vocational Aptitude Battery (ASVAB) is the primary instrument used by the Navy to select and classify enlisted personnel. A variety of composites are derived from the ASVAB. One of these, the Armed Forces qualification Test (AFQT), is used to screen applicants for enlistment eligibility. Eleven other ASVAB composites are used to determine qualification of recruits for specific Navy technical schools.

The ASVAB went into operation as the common military selection and classification instrument in January 1976, with the implementation of ASVAB Forms 6 and 7. In October 1980, ASVAB Forms 8, 9, and 10 replaced ASVAB 6 and 7. Whereas the validity of ASVAB 6 and 7 has been studied extensively, and that of ASVAB 8, 9, and 10 has been studied for a few Navy schools, ASVAB 8, 9, and 10 has not yet been the subject of a large-scale validation effort that involves a wide variety of Navy technical schools.

It is important that the validity of operational ASVAB selector composites (including the AFQT) for predicting performance in Navy technical schools be evaluated periodically to ensure effective selection and classification of Navy enlisted personnel. In addition, professional standards for testing require that validity also be examined for sex and race subgroups, where sufficient data are available, to determine whether use of the ASVAB selectors results in differential prediction.

Objectives

The objectives of this research were to (1) examine the validity of ASVAB 8, 9, and 10 selector composites, including the AFQT, for predicting performance in a wide variety of Navy schools, and (2) identify and evaluate ASVAB 8, 9, and 10 composites that predict performance in specific schools better than the operational composites.

Method

The sample consisted of students assigned to 47 Navy "A" schools and 53 Basic Electricity and Electronics (BE/E) schools between October 1980 and October 1982. The predictor variables were the ASVAB tests, the Λ FQT, 12 ASVAB school selector composites, and 25 experimental composites. The criterion measures were final school grade (FSG) and time in training (TIME) for the correlation analyses, and final status code, which indicates whether the student was a graduate or an academic drop, for the expectancy analyses.

Pearson product-moment correlations between predictors and criteria were computed and corrected for restriction in range. For each school, the validity coefficients of the presently used and alternate composites were compared and the differences between them were tested for significance. Multiple correlations between ASVAB tests and the criterion were calculated for each school. Expectancy tables were constructed using final status code as the criterion for the 54 courses with sufficient data.

For the schools with a minimum of 25 students per subgroup, uncorrected and corrected correlations, regression slopes, intercepts, and standard errors of estimate were computed separately for sex and race subgroups. For schools with a minimum of 75 students per subgroup, a moderated multiple regression strategy was used to investigate the differences between the subgroup regression equations.

Results

For "A" schools using an FSG criterion, the median uncorrected and corrected validity coefficients of operational ASVAB school selector composites were .35 and .55 respectively. For "A" schools using a TIME criterion, the median uncorrected and corrected operational composite validity coefficients were -.27 and -.42 respectively; the corresponding values for BE/E schools, all of which use a TIME criterion, were -.36 and -.57. Similar results were obtained for the AFQT.

Inspection of the correlational and expectancy analysis results for the "A" schools and their prerequisite BE/E schools revealed a number of schools for which an alternate ASVAB composite appeared to predict training performance better than the current one. However, for most of these schools a change in selector composites was not warranted, for some of the following reasons: (1) The proposed change was not supported by validity data from the present study for related schools, (2) the proposed change was not supported by validity data from earlier studies for the same or related schools, (3) the proposed change would not be logically valid, given the content of the course and of the job, and (4) the composites found to be significantly more valid than the current composite are not presently used by the Navy, and there does not appear to be adequate justification for adding them. Two "A" schools, EM-6070 and QM-6001, and three BE/E schools, EM-6258, EM-6273, and EM-6303, were identified for which a change did, nevertheless, appear warranted.

Comparisons of the ASVAB school selector composite and AFQT validity coefficients for males and females did not reveal a systematic tendency for validity coefficients to be higher for either sex group; however, the moderated multiple regression analysis detected regression equation differences for the ASVAB school selector and AFQT for both schools analyzed (DP-6167 and MS-6125). For the race subgroup analyses, the validity of the ASVAB selector composite and the AFQT was higher for whites than for blacks in seven out of eight schools. For the MS-6125 school, no slope or intercept differences between the race subgroups were found for the ASVAB school selector composite; a small intercept difference was found for AFQT. For SH-6477, an intercept difference was found for the ASVAB selector composite; slope and intercept differences between blacks and whites were found for AFQT.

Conclusions

- 1. The operational ASVAB 8, 9, and 10 selector composite validity coefficients against an FSG criterion were somewhat lower than those previously reported for ASVAB 6 and 7 but were still in the range of acceptable validity.
- 2. The operational ASVAB selector composite validity coefficients against a TIME criterion were somewhat higher than those previously reported for ASVAB 6 and 7 but were lower than desired for many schools.
- 3. In two "A" schools (EM-6070 and QM-6001) and three BE/E schools (EM-6258, EM-6273, EM-6303), a change of selector composites would substantially improve prediction of performance.
- 4. Regression equation differences for the ASVAB school selector composite and the AFQT were found between male and female, and between black and white subgroups for both schools in the subgroup analyses. However, because the samples were small and represented only a very small fraction (2 out of 100 for sex and race respectively) of the

schools in the study, these findings should be regarded as tentative until further investigations of these issues have been made.

Recommendations

ことには、100円のことによった。100円のことには、100円のことには、100円のことには、100円のことには、100円のことには、100円のことには、100円のことには、100円のことには、100円の

- 1. To improve prediction of performance in two "A" schools (EM-6070, QM-6001) and three BE/E schools ((EM-6258, EM-6273, EM-6303), the proposed ASVAB 8, 9, and 10 composites presented in Table 11 should be adopted.
- 2. Further research should be conducted to improve the ASVAB's differential prediction of performance across Navy technical schools.
- 3. Further research should be conducted to determine whether the use of the ASVAB school selector composites or the AFOT may result in differential prediction of performance for sex or race subgroups.

CONTENTS

INTRODUCTION	ĺ
Background and Problem	1
METHOD	2
Samples Variables Criteria Predictors Procedure Data Analyses Total School Samples Sex and Race Subgroups	2 2 2 2 2 9 9
RESULTS	11
Total School Samples Validity of ASVAB School Selector Composites Validity of AFQT Sex and Race Subgroups Validity of ASVAB School Selector Composites Validity of AFQT	11 19 19 19 19
DISCUSSION AND CONCLUSIONS	21
Total School Samples Validity of ASVAB School Selector Composites Proposed Changes in ASVAB School Selector Composites Validity of AFQT Sex and Race Subgroups Validity of ASVAB School Selector Composites Validity of AFQT	21 21 23 24 24 24 26
RECOMMENDATIONS	26
REFERENCES	27
APPENDIX ABIVARIATE AND MULTIPLE CORRELATIONS BETWEEN PRIMARY PREDICTOR SCORES AND SCHOOL PERFORMANCE	A-0
APPENDIX BCORRELATIONS BETWEEN CURRENT ASVAB SELECTOR COMPOSITES AND MOST VALID ALTERNATE COMPOSITES	B-0

LIST OF TABLES

1.	"A" Schools Included in Validation Analysis	3
2.	BE/E Schools Included in Validation Analysis	•
3.	Predictor Variables From ASVAB Forms 8, 9, and 10	7
4.	Means, Standard Deviations, and Correlations Among ASVAB 8, 9, and 10 Tests and Navy Composites for a Full-Range Recruit Sample	10
5.	Median Correlations Between School Performance Criteria and ASVAB Selector Composites Used by "A" Schools	12
6.	Median Correlations Between TIME and ASVAB Selector Composites Used by BE/E Schools	1 :
7.	Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate of Current ASVAB Selector Composites for "A" Schools	1.5
8.	Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate of Current ASVAB Selector Composites for BE/E Schools	17
9.	Validation Statistics by Subgroup in 16 "A" Schools for Current ASVAB Selector Composites	20
10.	Validation Statistics by Subgroup in 16 "A" Schools for AFQT	2
11.	Proposed Changes in Selector Composites by Technical School	2

INTRODUCTION

Background and Problem

The Armed Services Vocational Aptitude Battery (ASVAB) is the primary instrument used by the Navy in the selection and initial assignment of enlisted personnel to Navy ratings (jobs) and their associated technical schools. The operational version of the battery, Forms 8, 9, and 10, consists of 10 cognitive tests. A variety of composites, sums of certain ASVAB tests, are derived from the ASVAB. One of these, the Armed Forces Qualification Test (AFQT), is used to screen applicants for enlistment eligibility. Twelve other ASVAB composites are currently in use by the Navy to determine eligibility for specific Navy technical schools.

The ASVAB initially became the common military selection and classification instrument, replacing the Basic Test Battery (BTB), in January 1976, with the implementation of ASVAB Forms 6 and 7. In October 1980, Forms 8, 9, and 10 replaced Forms 6 and 7. Whereas the validity of the BTB and ASVAB Forms 6 and 7 have been studied extensively (Alf, Gordon, Rimland, & Swanson, 1962; Thomas & Thomas, 1967; Thomas, 1970; Swanson 1979), and the validity of ASVAB 8, 9, and 10 has been studied for a few Navy schools (e.g., Booth-Kewley, 1984), ASVAB 8, 9, and 10 has not yet been the subject of a large-scale validation effort that involves a wide variety of Navy technical schools.

It is important that the validity of operational ASVAB selector composites (including AFQT) for predicting performance in Navy technical schools be evaluated periodically to ensure effective selection and classification of Navy enlisted personnel. While the criterion of ultimate concern may be performance on the job, rather than in job training courses, the ASVAB is typically validated against measures of training performance such as final course grade, time in training, or a pass/fail (attrition) criterion. There are many reasons for this approach, the most important that adequate measures of Navy job performance are simply not available (although they are currently under development). Also, performance in training provides evidence of a person's ability and desire to learn and perform necessary job skills; this ability and desire could be expected to predict later job success. Finally, validation of selectors against final grades helps to ensure that only persons with a high probability of mastering course material are selected; validation against either time in training or attrition helps to reduce training costs.

Although the AFQT is used only for selection into the Navy, not for classification of personnel into technical schools, it is regarded as a measure of general mental ability and would thus be expected to predict school performance. Confirmation of this expectation requires that AFQT be included in this validation of ASVAB 8, 9, and 10.

In addition to determining the validity of ASVAB selector composites and of the AFQT against school performance for Navy enlisted personnel generally, professional standards for the development and use of tests (American Psychological Association, 1974) require that criterion-related validity also be examined for sex and race subgroups, where sufficient data are available. This study should be done to determine whether the use of operational ASVAB selector composites results in differential prediction of performance.

<u>Objectives</u>

The objectives of this research were to (1) examine the validity of ASVAB 8, 9, 10 selector composites, including the AFQT, for predicting performance in a wide variety of

Navy schools, and (2) identify and evaluate ASVAB 8, 9, 10 composites that predict performance in specific schools better than do the operational composites.

METHOD

Samples

The samples consisted of students assigned to 47 Navy Class "A" schools and 53 Basic Electricity and Electronics (BE/E) schools. All schools having both predictor and criterion data for 50 or more students were included in the study. The time period covered was from October 1980 to October 1982. The schools included in the validation, along with sample sizes, are shown in Tables 1 and 2.

Variables

Criteria

Final school grade (FSG) was used as the primary criterion of school performance for the 35 schools assigning such a grade. The remaining 65 schools, 12 of the "A" schools and all 53 of the BE/E schools, use a self-paced mode of instruction, in which a student must demonstrate mastery of each course module before proceeding to the next. For these courses, the number of hours required to complete the course (TIME) was used as the primary criterion of school performance. Final status code, which indicates whether the student was a graduate or an academic drop, was available for all schools and was used as a criterion measure in expectancy analyses for the 54 courses having a sufficient number of academic drops. (Because the ASVAB was not designed to predict attrition due to nonacademic factors, nonacademic drops were not included in the expectancy analyses.)

Predictors

The predictors used in the study were derived from ASVAB 8, 9, 10, which had been administered to the subjects at the time of their enlistment. The primary predictor variables, which are shown in Table 3, were the scores obtained on the 10 cognitive tests and the verbal score of ASVAB, the 12 school selector composites currently used by the Navy, and the AFQT. (The AFQT score is obtained by summing the raw scores on the arithmetic reasoning, word knowledge, and paragraph comprehension tests plus one-half the score on the numerical operations test, and converting the total to a percentile score.)

Twenty-five additional ASVAB composites (see Table 3) were included in the analyses in an attempt to identify composites that might be more valid than existing ones. Ten of these composites are currently in use by the Army, Marine Corps, or the Air Force. The remaining 15 composites were experimental, and were selected on a rational basis after examining occupational information on job duties as well as validity data from past studies of ASVAB (e.g., Swanson, 1979).

Procedure

Final school grades (FSG) were obtained directly from the schools. Criterion data in the form of time required to complete the course (TIME) were extracted from data tapes obtained from the Chief of Naval Technical Training. ASVAB test scores, AFQT scores, final status, sex, and race codes were extracted from data tapes provided by the Chief of Naval Education and Training.

Table 1
"A" Schools Included in Validation Analysis

		Subjects in Correlational Analyses	Subjects in Expectancy Analyses				
Course		Total	Grad	Drop	Total		
Code	Courses With a Final School Aviation Boatswain's Mate, Aircraft Handling (ABH) Aviation Boatswain's Mate, Fuels (AI Aviation Boatswain's Mate, Launch & Recovery Equipment (ABE) Builder (BU) Construction Electrician (CE) Construction Mechanic (CM) Cryptologic Technician, Administrative (CTA) Cryptologic Technician, Collection (CTR) Cryptologic Technician, Technical (CTT) Cryptologic Technician Technical (CTT) Cryptologic Technician Technical (CTT) Data Processing Technician (DP) Data Systems Technician (DP) Data Systems Technician, Gun (FTG) Fire Control Technician, Gun (FTG) Fire Control Technician, Missile (FT Gas Turbine Fundamental Electrical (GSE/GSM)	N	N	N	N		
	Courses With a Final School G	rade (FSG) Crite	rion				
6527	Aviation Boatswain's Mate, Aircraft						
		69					
6512	Aviation Boatswain's Mate, Fuels (ABF)	96			~ ~		
6513							
		72					
6286		203			~-		
6289		126					
6291	Construction Mechanic (CM)	79					
6020				_			
	Administrative (CTA)	107	129	9	138		
6301	Cryptologic Technician,						
		140	174	42	216		
6320	Cryptologic Technician,						
	Technical (CTT)	63					
6302	Cryptologic Technician						
		259	311	83	394		
6167	Data Processing Technician (DP)	373					
6131		118					
6070		369	549	52	601		
6292	Equipment Operator (EO)	181					
6376	Fire Control Technician, Gun (FTG)	117					
6377		245					
6027		172					
6108		134	204	10	214		
8563	,						
• • • • • • • • • • • • • • • • • • • •		117					
8564	Gas Turbine Technician (GSM)	84					
6025	Gunner's Mate Technician (GMT)	99	124	7	131		
6106	Hull Maintenance Technician (HT)	53					
6119	Hull Maintenance Technician (HT)	390					
6120	Hull Maintenance Technician (HT)	297					
6068	Machinery Repairman (MR)	194	308	45	353		
6125	Mess Management Specialist (MS)	1518					
6001	Quartermaster (QM)	473	694	34	726		
6477	Ship's Serviceman (SH)	595					
6005	Signalinan (SM)	377					
6288	Steelworker (SW)	85					

Table 1 (Continued)

		Subjects in Correlational Analyses	Subjects in Expectancy Analyses			
Course Code	School/Course Rating	Total N	Grad N	Drop N	Total N	
	Courses With a Final School Grade (F	SG) Criterion (Continue			
6146	Strategic Weapons System					
	Electronics (SWS)	187	246	83	329	
6034	Torpedoman's Mate, Submarine					
	Operator (TMS)	82				
6036	Torpedoman's Mate, Surface	212				
	Operator (TM)	219				
6093 6290	Torpedoman's Mate (TMT) Utilitiesman (UT)	202 77				
	Courses With a Contact Time	e (TIME) Criteri	on			
6124	Avaition Antisubmarine Warfare					
	Technician (AX)	288	189	9	198	
6239	Aviation Electronics Technician (AT)	1489	1066	58	1124	
6240	Aviation Fire Control Technician (AQ)	475	355	27	382	
6501	Aviation Machinist's Mate (AD)	880	564	37	601	
6486	Boiler Technician (BT)	2085				
602D	Electronic Warfare Technician (EW)	408				
602A	Electronic Wa. fare Technician (EW)	400				
6487	Engineman (EN)	1258				
605Z	Interior Communications Electrician (IC			-		
6492	Machinist's Mate (MM)	2598				
606D	Radioman (RM)	302				
6242	Tradevman (TD)	303				

Table 2
BE/E Schools Included in Validation Analysis

		Subjects in Correlational Analyses	Subjects in Expectancy Analyses				
Course		Total	Grad	Drop	Total		
Code	School/Course Rating	N	7	N'	N		
6232	Aviation Antisubmarine Warfare						
	Technician (AX)	449	449	21	470		
6235	Aviation Electrician's Mate (AE)	1606	1606	195	1801		
6230	Aviation Electronics Technician (AT)	2245	2245	101	2346		
6231	Aviation Fire Control Technician (AQ)	794	794	60	8 54		
6237	Aviation Support Equipment						
	Technician (ASE)	120	120	19	1 39		
6259	Construction Electrician (CE)	65					
6270	Construction Electrician (CE)	148	148	25	173		
6307	Construction Electrician (CE)	291	291	30	321		
6308	Cryptologic Technician						
	Maintenance (CTM)	27.5	275	24	299		
6269	Data Systems Technician (DS)	226	226	22	248		
6309	Data Systems Technician (DS)	129					
6366	Data Systems Technician (DS)	151			- -		
605R	Electrician's Mate, Nuclear Field (EM)	592	592	14	606		
605U	Electrician's Mate, Nuclear Field (EM)	1109					
605V	Electrician's Mate, Nuclear Field (EM)	272					
6258	Electrician's Mate (EM)	490	490	91	58 I		
6273	Electrician's Mate (EM)	269	269	82	351		
6303	Electrician's Mate (EM)	164	164	52	216		
6256	Electronics Technician (ET)	637	637	33	670		
6271	Electronics Technician (ET)	412					
6304		364					
	Electronics Technician (ET)	7D4	•-				
6403	Electronics Technician, Advanced	958	958	100	1058		
(4.00	Electronics Field (ET)	7 15	778	1.00	1008		
6409	Electronics Technician, Advanced	E 1 1	511	111	(22		
C 1 1 1.	Electronics Field (ET)	511	511	111	622		
6414	Electronics Technician, Advanced	0.30	2.20	14.3			
	Electronics Field (ET)	928	928	142	1070		
6254	Electronic Warfare Technician (EW)	68	68	9	77		
6275	Electronic Warfare Technician (EW)	166	166	17	183		
6306	Electronic Warfare Technician (EW)	550	550	50	600		
6248	Fire Control Technician, Gun (FTG)	415	415	58	473		
6310	Fire Control Technician, Gun (FTG)	221	231	19	240		
6359	Fire Control Technician, Gun (FTG)	220	330	26	246		
6404	Fire Control Technician, Gun						
	Submarine (FTG)	57	- -		• -		
6413	Fire Control Technician, Gun (FTG)	159	59	7	166		

Note. Contact time (TIME) was the criterion of school performance for all BE/E schools.

Table 2 (Continued)

		Subjects in Correlational Analyses	Subjects in Expectancy Analyses			
Course Code School/Course Rating 6249 Fire Control Technician, Missile (FTM) 6311 Fire Control Technician, Missile (FTM) 6358 Fire Control Technician, Missile (FTM) 6372 Gas Turbine Technician, Electrical (GSE) 6370 Gunner's Mate, Gun (GMG) 6368 Gunner's Mate, Missile (GMM) 6369 Gunner's Mate, Technician (GMT) 6274 Interior Communications (IC) 6315 Interior Communications (IC) 6367 Interior Communications (IC) 6367 Gunner's Mate, Technician (GMT) 606G Mineman (MN) 606I Radioman, Submarine (RM) 606K Radioman, Submarine (RM) 6352 Radioman, Submarine (RM) 606M Sonar Technician, Submarine (STS) 606N Sonar Technician, Submarine (STS) 6277 Sonar Technician, Submarine (STS) 6276 Sonar Technician, Submarine (STS)	Total N	Grad N	Drop N	Total N		
6249	Fire Control Technician, Missile (FTM)	284	284	28	312	
6311		140	140	16	156	
6358	Fire Control Technician, Missile (FTM)	166	166	19	185	
6372	Gas Turbine Technician, Electrical (GSE)	57				
6370	Gunner's Mate, Gun (GMG)	369	369	44	413	
6368	Gunner's Mate, Missile (GMM)	264	264	21	285	
6369	Gunner's Mate, Technician (GMT)	224	224	28	252	
6274	Interior Communications (IC)	600	600	249	849	
6315	Interior Communications (IC)	66	66	17	83	
6367	Interior Communications (IC)	89	89	29	118	
606G	Mineman (MN)	58	58	22	80	
606]	Radioman, Submarine (RM)	156	156	7	163	
606K	Radioman, Submarine (RM)	58				
6352	Radioman, Submarine (RM)	162	162	11	173	
606M	Sonar Technician, Submarine (STS)	66				
606N	Sonar Technician, Submarine (STS)	322	322	25	347	
6277	Sonar Technician, Submarine (STS)	112	112	7	119	
6276	Sonar Technician, Submarine (STS)	149	149	7	156	
6318	Torpedoman's Mate, Technician (TMT)	256	256	36	292	
6551	Torpedoman's Mate, Technician (TMT)	101	101	14	115	
6233	Tradevman (TD)	430	430	25	455	

Table 3
Predictor Variables From ASVAB Forms 8, 9, and 10

Predictor Variable	Abbreviation	Description
	ASVAB TO	ests ^a
General Science	G\$	A 25-item test of knowledge of the physical (13 items) and biological (12 items) sciences—11 minutes.
Arithmetic Reasoning	AR	A 30-item test of ability to solve arithmetic word problems—36 minutes.
Word Knowledge	WK	A 35-item test of knowledge of vocabulary, using words embedded in sentences (11 items) and synonyms (24 items)11 minutes.
Paragraph Comprehension	PC	A 15-item test of reading comprehension13 minutes.
Numerical Operations	NO	A 50-item speeded test of ability to add, subtract, multiply, and divide one-and two-digit numbers3 minutes.
Coding Speed	CS	An 84-item speeded test of ability to recognize numbers associated with words from a table7 minutes.
Auto and Shop Information	AS	A 25-item test of knowledge of automobiles, shop practices, and use of tools11 minutes.
Mathematics Knowledge	МК	A 25-ite:n test of knowledge of algebra, geometry, fractions, decimals, and exponents24 minutes.
Mechanical Comprehension	МС	A 25-item test of knowledge of mechanical and physical principles19 minutes.
Electronics Information	EI	A 20-item test of knowledge of electronics, radio, and electrical principles and information9 minutes.
Merbal	Λť	A composite consisting of WK + PC.

^aReported as Navy Standard Scores having a mean of about 50 and a standard deviation of 10 for an unrestricted recruit population.

Table 3 (Continued)

Predictor Variable	Abbreviation	Description
ASVAB	Selector Composites (Jsed by Military Services
All Services		
AR+NO/2+VE VE+AR AR+MK+EI+GS VE+NO+CS	AFQT GT ELEC CLER/A	Armed Forces Qualification Test. General technical. Electronics. Clerical. Used as administrative composite (A) by Air Force.
Navy		
VE+MC+AS VE+MC	MECH AM	Mechanical. Selector for Aviation Structural Me-
AR+2MK+GS	BE/B ^b	chanical School. Selector for Basic Electricity and Electronics School.
MK+AS	BT/EN/MM	Selector for Boiler Technician, Engine- man, and Machinist's Mate Schools.
VE+AR+NO+CS	СТ	Selector for Communications Technician (Interpreter) School.
VE+MK+GS AR+MC+AS	HM MR	Selector for Hospitalman School. Selector for Machinery Repairman School.
VE+AR+MC MK+EI+GS	SUB ELEC Comp ^C	Selector for Submarine School. Component of electronics composite.
Air Force		
MC+GS+AS	М	Mechanical.
Army		
CS+AR+MC+AS CS+AR+MC+MK NO+VE+MC+AS NO+CS+VE+AS MK+EI+GS+AS NO+EI+MC+AS VE+MK+MC+GS	CO FA OF SC GM MM ST	Combat. Field artillery. Operators and food. Surveillance and communications. General maintenance. Mechanical maintenance. Skilled technician.
Marine Corps		
NO+VE+AS AR+VE+AS MK+EI+GS+AS	CO FA GM	Combat. Field artillery. General :naintenance.

bNot all BE/E schools use the "BE/E" composite as the operational selector, nor is it used only by BE/E schools--a number of "A" schools use it as well.

CMost of the Navy schools that use the electronics composite use the following dual cutoffs: MK + EI + GS = 156 + AR = 218. MK + EI + GS is never used by itself as a school selector.

Table 3 (Continued)

Predictor Variable	Abbreviation	Description
	Experimental ASVAB Com	posites
WK+AR	AR+EI+MC	
WK+MC+AS	VE+MK	
WK+NO+CS	MK+EI	
AR+MC	MK+MC+EI	
CS+VE+AR	AR+MK	
MK+EI+AS	AR+EI+GS	
AR+MK+MC	AR+MK+AS	
	MC+MK+AS	

Data Analyses

Total School Samples

For each of the 100 schools, means, standard deviations, and product-moment correlations were computed for all of the ASVAB predictors (tests, existing composites, and experimental composites). Considerable restriction was evident in the samples because school assignment was contingent on achieving minimum scores on certain sets of ASVAB tests. Therefore, the validity coefficient of each predictor was corrected for restriction in range to reflect the value that would be obtained for a sample representing the full range of ability of Navy recruits, using formulas from Thorndike (1949, pp. 173-174) for direct and indirect restriction, as appropriate. The population statistics used for the corrections were based on a group of 66,459 regular Navy recruits who entered the Navy from 3rdy 1981 through may 1982. For this population, means, standard deviations, and intercorrelations for the ASVAB tests and Navy composites are shown in Table 4.

For each school, the uncorrected (r_u) and corrected (r_c) validity coefficients of the current Navy composites and the alternate composites were compared with the validity coefficient of the operational school selector composite. Whenever another composite appeared more predictive than the operational composite, the differences between the uncorrected coefficients were tested for significance (Johnson 1949, p. 87). For schools that use multiple selector composites, the alternate composites were compared with the most predictive operational composites.

Multiple correlations (Rs) between ASVAB test scores¹ and the eritorion for each school were calculated using a standard stepwise regression procedure (forward inclusion). In this procedure, the order of inclusion of subtest predictors is determined by the contribution of each predictor to the variance accounted for each step.

¹The VE score, which is the sum of word knowledge (WK) and paragraph comprehension (PC) scores, was used instead of WK and PC scores separately in the multiple regression analysis.

Table 4

Means, Standard Deviations, and Correlations Among ASVAB 8, 9, and 10

Tests and Navy Composites for a Full-Range Recruit Sample
(N = 66,459)

					Co	rrelat	ion							
Test	:	2	3	4	5	6	7	8	9	10	П		Mean	SD
						ASV/	AB Te	sts						
1 GS	100	50	68	53	07	11	51	50	56	60	69	. 	51.91	7.90
2 AR	50	100	46	46	32	27	37	70	52	43	50		53.62	7.86
3 WK	68	46	100	61	08	16	38	45	43	49	96		52.54	6.7
4 PC	53	46	61	100	14	20	32	43	39	39	80		53.31	6.4
5 NO	97	32	08	14	100	53	-04	35	05	01	11		53.26	7.3
6 CS	1.1	27	16	20	53	100	01	31	10	06	19		53.09	7.9
7 AS	5 !	37	38	32	~04	01	100	29	63	64	40		51.25	8.67
8 MK	50	70	45	43	35	31	29	100	49	41	48		52.54	8.8
9 MC	56	52	43	39	05	10	63	49	100	61	45		51.24	8.27
10 EI	60	43	49	39	01	06	64	41	61	100	50		51.45	8.0
11 VE	69	50	96	80	11	19	40	48	45	50	100		52.88	6.37
						Corre	lation							
Test	1	2	3	4	5	6	7	8	9	10	П	12	Mean	SD
				ASV	AB N	avy Se	electo	r Com	posite	25	· · · · · · · · · · · · · · · · · · ·			
1 GT	100	72	87	59	80	86	71	79	87	76	93	78	106.50	12.3
2 MECH	- 2	100	77	36	93	65	85	49	75	93	88	78	155.38	19.1
3 ELEC	6.2	7 7	100	50	80	95	87	69	93	83	89	97	209.54	26.10
4 CLER	59	3 6	50	100	45	55	41	94	56	36	52	46	159.22	15.67
5 AM	80	93	80	45	100	71	74	57	82	94	36	80	104.12	12.5
6 BE/E	\$6	65	95	55	71	100	85	73	93	74	85	90	210.62	28.8
7 BT/EN/MM	- :	85	87	41	74	85	100	57	30	88	79	86	103.80	14.0
8 CT	-4	49	69	94	57	73	57	100	69	56	71	61	212.84	20.68
9 HM	5-	75	93	56	82	93	80	69	100	71	86	93	157.33	19.30
10 MR	76	93	83	36	94	74	38	56	71	100	91	78	156.08	20.4
11 SUB	93	88	89	52	86	85	79	71	86	91	100	83	157.74	18.3
12 ELEC Comp	- 5	78	97	46	80	90	36	61	93	78	83	100	155.91	20.2

Note. Decimal points have been omitted. Coefficients are Pearson product-moment correlations.

Regression slopes, intercepts, and standard errors of estimate were calculated for operational ASVAB school selector composites and for the AFQT for all school samples. Using final status code as the criterion, expectancy tables were constructed for the 54 courses (13 "A" schools and 41 BE/E schools) with sufficient data. The population values used for these tables were based on the sample of 66,459 recruits that was used for correcting validity coefficients for range restriction.

Sex and Race Subgroups

To identify any tendencies for predictive validity to vary by sex or race, several statistics were calculated. For the schools with at least 25 students per sex or race subgroup, the means, standard deviations, and uncorrected and corrected correlations of the operational ASVAB school selector composite and the AFQT were computed, as well as criterion means and standard deviations. In addition, for the school selector composite and for the AFQT, regression slopes, intercepts, and standard errors of estimate were calculated separated for sex and race subgroups.

For schools with at least 75 students per subgroup, a moderate multiple regression strategy (Bartlett, Bobko, Mosier, & Hannan, 1978) was used to investigate the differences between the subgroup regression equations. More specifically, these analyses were performed to identify any significant differences in regression slopes and intercepts for ASVAB school selector composites and AFQT. If such differences exist, separate regression equations would be required to represent the relationship between the ASVAB composite, or AFQT, and the school performance criterion for these subgroups. The multiple regression analyses were performed with the ASVAB measure (the school selector composite or AFQT), sex or race (coded as a dummy variable), and the interaction of the ASVAB measure and sex or race entered into the equation, in that order, as predictors.

RESULTS

Total School Samples

Bivariate and multiple correlations of the primary predictors (ASVAB tests and Navy composites) with school performance are shown in Appendix A, where the schools are grouped by operational composite. Appendix B shows the correlations between operational ASVAB selector composites and the most valid alternate composites for each school; the ASVAB composites found to be significantly more predictive than the school's current composite are indicated with asterisks. The correlations between all predictor variables and school performance criteria (Appendix C) and expectancy tables (Appendix D) were also calculated for each of the 100 schools used in the study.²

Validity of ASVAB School Selector Composites

Correlational Analyses. Median validity coefficients of the operational Navy ASVAB composites for "A" schools in which they are used are presented in Table 5. As indicated, the median uncorrected coefficients for "A" schools using an FSG criterion ranged from .23 for the mechanical composite to .48 for the MR selector; the corrected coefficients ranged from .37 for the mechanical and clerical composites to .68 for the BT/EN/MM selector. The overall median coefficients were .35 (r_u) and .55 (r_c) .

²Appendices C and D have been printed separately in a Supplement to this report and are available from the Navy Personnel Research and Development Center, Code 62.

Table 5

Median Correlations Between School Performance Criteria and ASVAB Selector Composites Used by "A" Schools

		Median Correlations								
			FSG		TIME					
Composite	Description	r _u	r _C	Na	r _u	TIME r _C 42 -49 -47 -3947	٧a			
VE+AR	General technical (GT) composite	42	54	11			0			
VE+MC+AS	Mechanical (MECH) composite	23	3 7	9			0			
AR+MK+EI+GS	Electronics (ELEC) composite	41	67	8	-25	-42	8			
VE+NO+CS	Clerical (CLER) composite	23	37	1	-35	-49	1			
AR+2MK+GS	BE/E selector	27	44	5	- 32	-47	1			
MK+AS	BT/EN/MM selector	41	68	2	-28	- 39	3			
AR+MC+AS	MR selector	48	67	1			0			
VE+AR+MC	SUB selector	38	56	ı	-19	-47	1			
All composites		35	55	38	- 27	-42	14			

Note. Decimal points have been omitted from correlation coefficients.

The median uncorrected coefficients for "A" schools with a TIME criterion (see Table 5) ranged from -.19 for the SUB selector to -.35 for the clerical composite, and the median corrected validity coefficients ranged from -.39 for the BT/EN/MM selector to -.49 for the clerical composite. (A negative value was expected for the TIME criterion because less time was expected for high-ability students.) The overall median coefficients were -.27 (r₁) and -.42 (r₂).

For BE/E schools, the median correlations between the Navy composites and TIME were substantially higher than those obtained for the "A" schools that use a TIME criterion. As shown in Table 6, the median uncorrected coefficients ranged from -.19 for the general technical composite to -.40 for the BE/E selector; the corrected coefficients ranged from -.38 for the mechanical composite to -.65 for the BT/EN/MM selector. The overall median coefficients were -.36 $(r_{\rm H})$ and -.57 $(r_{\rm C})$.

^aThe number of schools in the table differs from the number of schools in the study because some schools use more than one selector composite.

Table 6

Median Correlations Between TIME and ASVAB Selector
Composites Used by BE/E Schools

		Medi	an Correlat TIME	ions
Composite	Description	r _u	r _c	Na
VE+AR	General Technical (GT) composite	-19	-51	6
VE+MC+AS	Mechanical (MECH) composite	-20	-38	1
AR+MK+EI+GS	Electronics (ELEC) composite	-38	-61	36
VE+NO+CS	Clerical (CLER) composite	-26	-40	3
AR+2MK+GS	BE/E selector	-40	- 59	13
MK+AS	BT/EN/MM selector	-39	-65	1
VE+AR+MC	SUB selector	-27	- 57	8
All composites		-36	- 57	68

Note. Decimal points have been omitted from correlation coefficients.

For most of the schools used in the study, a number of alternate composites, either Navy or experimental, predicted performance better than the current selector composite. For 39 out of the 100 schools studied, one or more alternate ASVAB composites predicted FSG or TIME significantly better than the operational composite (p < .05). More specifically, alternate composites were significantly better predictors than the operational school selectors in 11 of the 35 "A" schools with an FSG criterion, 9 of the 12 "A" schools with a TIME criterion, and 19 of the 53 BE/E schools, all of which use a TIME criterion.

For each of the 80 schools that had a sample of 100 or more, the uncorrected validity coefficients of the operational composites were compared with multiple correlations (Rs) computed using the same number of ASVAB tests as contained by the operational composite (see Appendix A). For every school studied, the multiple correlation was higher than the operational composite validity coefficient. The mean and median differences between the multiple correlation and the uncorrected operational composite validity coefficient were .08 and .07 correlation points for "A" schools with an FSG criterion, .09 and .09 points for "A" schools with a TIME criterion, and .12 and .11 points for BE/E schools with a TIME criterion.

For the "A" schools with an FSG criterion, the intercepts, slopes, and standard errors of estimate varied substantially across schools, even among those courses using the same selector composite (see Table 7). Although the "A" schools with a TIME criterion showed similar variation, the intercepts, slopes and standard errors of estimate for these courses

^aThe number of schools in the table differs from the number of schools in the study because some schools use more than one selector composite.

are not directly comparable because the TIME criterion is not measured on a common metric across schools. Similarly, because all the BE/E schools in the study use the TIME criterion, the intercepts, slopes, and standard errors of estimate presented for these schools in Table 8 should not be directly compared.

Expectancy Analyses. Expectancy tables were constructed for the current school selector composite for each of the 54 schools having sufficient data. For 24 of these schools (5 "A" schools and 19 BE/E schools), one or more alternate ASVAB composites had been found in the correlation analyses to be significantly more valid than the operational one. Expectancy tables for the most promising alternate composites were prepared for these 24 schools (see Appendix C).

In each expectancy table, data are presented for the current cutting score, or the corresponding cutting score for an alternate composite, as well as for several cutting scores above and below it. The tables show the number of recruits, per 1000, who would qualify for the school, and the number of graduates and academic drops expected for each cutting score listed. The expectancy analyses results present the practical impact of using the proposed alternate selector in terms of school enrollment and academic attrition. This information, where available, supplements the validity information yielded by the correlational analyses.

The results of the expectancy analyses showed that in three "A" schools (EM-6070, AX-6241, and AQ-6240), use of the proposed alternate composite (AR + MK + EI + GS for EM and VE + AR + NO + CS for AX and AQ) with a cutting score comparable to the current one would yield more graduates and fewer drops than does the operational selector. For QM-6001 "A" school, use of the proposed composite (AR + 2MK +GS) would result in the same or slightly more graduates, and half as many drops. For AT-6239, use of the proposed selector composite (VE + AR + NO + CS) would yield more graduates and the same or slightly more drops as occur presently.

Effectiveness of Alternate Composites. On the basis of the correlational and expectancy results reported here, it appeared that alternate ASVAB composites would be more effective than the operational ones for the EM, AX, AQ, AT, and QM "A" schools. There is, however, a prerequisite BE/E school for four of these schools (not for QM), and the same selector composite is used for both BE/E and "A" schools within a rating. Therefore, the correlational and expectancy analyses results for the appropriate BE/E schools were inspected to determine whether they supported use of the proposed alternate composite.

Analysis of correlational data, which were available for all three EM BE/E schools (6258, 6273, and 6303), revealed that adoption of the proposed alternate composite (AR + MK + EI + GS) would not change the predictiveness of school performance appreciably. The results indicated that for EM-6258, a change to the proposed alternate composite (AR + MK + EI + GS) would result in a decrease of .04 and .02 in the uncorrected and corrected validity coefficients, respectively. For EM-6273 BE/E school, there would be a decrease of .01 in the uncorrected and no change in the corrected validity coefficient, and for EM-6303, there would be an increase of .02 in the uncorrected and no change in the corrected validity coefficient. The expectancy analyses for these BE/E schools showed that using the proposed composite (with a cutting score of 200) would result in 23 more graduates and 3 fewer drops per 1000 for 6258, 28 more graduates and 8 fewer drops for 6273, and 46 more graduates and 26 fewer drops for 6303 than would be expected with the current school selector composite.

Table 7

Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate of Current ASVAB Selector Composites for "A" Schools

Rating Code	Course Code	Selector Composite	N	ru	r _c	Intercept	Slope	Standard Error of Estimate
			Courses	With FSC		on		
ABE	6513	VE+AR	72	.41	.56	50.97	.31	5.76
ABF	6512	VE+AR	96	.38	.50	48.60	.30	6.40
ABH	6527	VE+AR	69	.42	.54	47.09	.31	6.08
CTR	6301	VE+AR	140	.50	.59	66.13	.24	4.07
CTT	6302	VE+AR	259	.60	.68	55.06	.32	4.29
CTT	6320	VE+AR	63	.44	.53	71.25	.19	3.76
)P	6167	VE+AR	373	.23	.39	83.00	.11	3.36
MS	6125	VE+AR	1581	.47	.57	58.62	.27	4.82
QΜ	6001	VE+AR	473	.47	.54	54.10	.34	6.59
SH	6477	VE+AR	595	.19	.32	75.33	.13	4.78
SM	6005	VE+AR	377	.32	.50	64.02	.25	5.28
3U	6286	VE+MC+AS	203	.43	.67	60.36	.16	3.41
CM	6291	VE+MC+AS	79	.23	.37	75.69	.06	3.04
EO	6292	VE+MC+AS	181	.22	.36	75.76	.07	3.64
GMT	6025	VE+MC+AS	99	.48	.71	66.78	.14	2.67
HT.	6106	VE+MC+AS	53	.13	.25	84.54	.03	2.99
iT	6119	VE+MC+AS	390	.34	.59	68.59	.11	2,99
iT	6120	VE+MC+AS	297	.30	.54	73.15	.09	2.91
sw	6288	VE+MC+AS	85	.20	.31	73.40	.07	4.03
JT	6290	VE+MC+AS	77	.15	.23	73.54	.06	4.97
)\$	6131	AR+MK+EI+GS	113	.32	.57	51.96		
FTG	6376	AR+MK+EI+GS	117	•32 •45	.72		.13	4.99
FTG	6377	AR+MK+EI+GS	245			34.88	.20	5.14
TM T	6027	AR+MK+EI+GS	172	.32	.57	51.83	.13	4.98
TM	6108		134	.52	.80	21.95	.26	5.11
SWS	6146	AR+MK+EI+GS		.42	.68	40.84	.18	5.08
CTA		AR+MK+EI+GS	187	.41	.13	51.00	.67	3.86
CE	6020	VE+NO+CS	107	.23	. 37	76.51	.11	4.40
EM	6289	AR+2MK+GS	126	.24	. 37	71.01	.07	4.79
	6070	AR+2MK+GS	369	.35	.44	54.83	.10	5.93
ΓM FMT	6036	AR+2MK+GS	219	.35	.47	65.70	.10	5.28
TMT	6093	AR+2MK+GS	202	.25	.39	71.01	.07	4.79
dR	6068	AR+MC+AS	194	.48	.67	40.80	.24	5.40
JSE/	8563	AR+MK+EI+GS	117	.46	•77	32.90	.23	5.27
GSM		MK+AS	117	.47	.74	41.76	. 37	5.24
GSM	8564	AR+MK+EI+GS	84	.36	.63	52.82	.15	4.75
		MK+AS	84	.35	.62	55.87	.27	4.73
TMS	6934	AR+2MK+GS	82	. 27	.49	75.37	.06	4.55
		VE+AR+MC	\$2	. 38	. 56	62.17	.16	4.33
		VE	82	.20	.41	76.67	٠٠	4.59

Table 7 (Continued)

Rating Code	Course Code	Selector Composite	٧	r _u	r _c	Intercept	Slope	Standard Error of Estimate
			Courses	With TIM	E Criter	ion		
AD	6501	AR+MK+EI+GS	880	35	50	350,75	82	37.86
AQ	6240	AR+MK+EI+GS	475	26	43	887.54	-1.70	92.72
AT	6239	AR+MK+EI+GS	1489	24	38	820.56	-1.45	93.58
AX	6241	AR+MK+EI+GS	288	28	45	881.92	-1.71	89.58
EW	602A	AR+MK+EI+GS	400	20	39	102.26	20	12.13
EW	602D	AR+MK+EI+GS	408	21	41	178.36	35	20.43
TD	6242	AR+MK+EI+GS	303	23	37	542.63	92	60.24
IC	605Z	AR+2MK+GS	658	32	47	383.13	77	41.67
BT	6486	MK+AS	2085	32	39	455.66	-1.36	62.39
EN	6487	MK+AS	1258	28	39	163,71	59	19.50
MM	6492	MK+AS	2598	25	33	394.41	-1.53	61.05
RM	606D	AR+MK+EI+GS	302	27	52	534.17	-1.52	65.76
		VE+NO+CS	302	35	49	566.22	-2.28	64.11
		VE+AR+MC	302	19	47	395.58	-1.25	67.17
		VE	302	09	36	269.43	-1.58	68.11

Table 8

Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate of Current ASVAB Selector Composites for BE/E Schools

Rating Code	Course Code	Selector Composite	N	r _u	r _c	Intercept	Slope	Standard Error of Estimate
MN	606G	VE+MC+AS	58	20	58	318.94	-1.01	47.47
AQ	6231	AR+MK+EI+GS	794	47	71	555.75	-1.72	44.47
ΑX	6232	AR+MK+EI+GS	449	50	73	526.64	-1.61	39.16
AT	6230	AR+MK+EI+GS	2245	50	69	495.98	-1.49	41.03
CTM	6308	AR+MK+EI+GS	27.5	29	57	664.31	-1.72	64.77
DS	6269	AR+MK+EI+GS	226	43	69	1156.44	-3.36	93.06
DS	6309	AR+MK+EI+GS	129	29	51	697.16	-1.85	81.82
DS	6366	AR+MK+EI+GS	151	29	53	776.83	-1.96	83.50
ET	6403	AR+MK+EI+GS	958	36	64	933.15	-2.48	78.21
ET	6409	AR+MK+EI+GS	511	35	61	1236.64	-3.24	110.10
EΤ	6414	AR+MK+EI+GS	928	36	58	1068.59	-2.74	100.47
EW	6254	AR+MK+EI+GS	68	30	50	696.84	-1.66	76.27
EW	6275	AR+MK+EI+GS	166	47	77	1270.89	-3.85	93.82
EW	6306	AR+MK+EI+GS	550	- 41	67	834.39	-2.40	69.78
FTG	6248	AR+MK+EI+GS	415	41	62	914.59	-2.47	81.44
FTG	6310	AR+MK+EI+GS	221	36	60	691.20	-1.77	61.29
FTG	6359	AR+MK+EI+GS	220	38	66	1024.88	-2.82	84.68
FTM	6249	AR+MK+EI+GS	284	39	65	994.17	-2.80	86.20
FTM	6311	AR+MK+EI+GS	140	44	77	966.86	-2.90	63.34
FTM	6358	AR+MK+EI+GS	166	38	64	994.74	-2.73	85.18
GMG	6370	AR+MK+EI+GS	369	40	57	473.82	-1.44	53.65
GMM	6368	AR+MK+EI+GS	264	38	63	530.60	-1.69	54.61
GMT	6369	AR+MK+EI+GS	224	41	52	433.03	-1.25	53.35
STG	6276	AR+MK+EI+GS	149	20	+2	732.21	-1.66	94.47
TD	6233	AR+MK+EI+GS	430	48	70	483.08	-1.44	
TMT	6551	AR+MK+EI+GS	101	39	67	493.88		38.80
AE	6235	AR+2M+GS	1606	40	57 56		-1.41	54.22
ASE	6237	AR+2MK+GS	120	49	63	415.61	-1.10	46.65
CE	6259	AR+2MK+GS	65	45 45		423.99	-1.25	44.68
CEM	6270	AR+2MK+GS	148	26	62	480.26	-1.48	54.44
CE	6307	AR+2MK+GS	291	36	42	357.01	88	55.61
EM	6258	AR+2MK+GS	490	36 39	55	387.02	-1.12	49.33
EM	6273	AR+2MK+GS	269	5° 61	55	651.74	-1.52	83.76
EM	6303	AR+2MK+GS AR+2MK+GS	164	N J 27	70	925.45	-2.64	77.29
IC VI	6274	AR+2MK+GS AR+2MK+GS			46	521.97	-1.12	62.77
IC IC	6315		600	42	59	948.59	-2.38	94.65
iC IC	6367	AR+2MK+GS	66	48	67	692.54	-1.85	59.18
		AR+2MK+GS	<u>8</u> 9	24	38	642.40	-1.29	91.31
TMT	6318	AR+2MK+GS	256 500	38	61	424.35	-1.19	45.05
EM	605R	VE+AR	592	11	29	444.70	-1.61	65.50
		VE+MC+AS	592	25	36	528.82	-1.61	63,73
E 1.4	, ns	AR#MK#EI#GS	59.2	27	37	662.47	-1.67	63.37
EM	605tj	VE+AR	1109	18	43	509.36	-2.32	60.54
		VE+MC+AS	1109	31	49	526.17	-1.73	58.42
		AR +MK +EI+GS	1179	34	50	683.09	-1.84	57.50

Table 8 (Continued)

Rating Code	Course Code	Selector Composite	N	ru	r ·	Intercept	Slope	Standard Error of Estimate
EM	605\'	VE+AR	272	26	58	618.38	-3.16	55.26
		VE+MC+AS	272	26	53	462.69	-1.34	55.26
		AR+MK+EI+GS	272	40	63	700.56	-1.90	52.44
ET	6256	VE+NO+CS	637	22	47	598.82	-1.55	81.03
		VE+MC+AS	637	29	53	755.02	-2.43	79.50
		AR+MK+EI+GS	637	34	57	1032.90	-2.78	77.97
ET	6271	VE+NO+CS	412	23	49	715.95	-2.01	95.11
		VE+MC+AS	412	33	56	933.29	-3.20	92.09
		AR+MK+EI+GS	412	34	57	1241.92	-3.43	92.03
ET	6304	VE+NO+CS	364	23	45	544.83	-1.49	68.85
		VE+MC+AS	364	24	51	573.11	-1.63	64.77
		AR+MK+EI+GS	364	27	55	870.52	-2.31	67.37
FTG	6404	AR+MK+EI+GS	57	25	47	502.41	-1.39	68.20
		VE+AR+MC	57	41	55	668.71	-2.85	64.43
		VE	57	12	33	293.20	-2.07	70.04
FTG	6413	AR+MK+EI+GS	159	17	38	562.45	-1.60	100.35
		VE+AR+MC	159	10	34	386.00	-1.10	101.26
		VE	159	00	24	187.60	.11	101.81
RM	6372	AR+MK+EI+GS	57	50	25	919.40	-2.71	69.43
		VE+NO+CS	57	41	59	767.89	-2.97	73.12
		MK+AS	57	39	65	691.25	-3.51	73.85
RM	606J	VE+NO+CS	156	33	42	533.57	-2.17	64.65
		VE+AR+MC	156	37	58	591.10	-2.44	63.47
		VE	156	17	42	337.42	-2.96	67.52
RM	606K	VE+NO+CS	58	02	00	128.01	.12	75.38
		VE+AR+MC	58	05	09	210.53	36	75.28
		VE	58	04	08	193.59	79	193.59
RM	6352	VE+NO+CS	162	26	40	445.31	-1.62	63.03
		VE+AR+MC	162	37	61	615.71	-2.54	60.48
		VE	162	11	43	290.18	-2.07	64.81
STS	60614	AR+MK+EI+GS	66	29	52	583.66	-1.40	59.75
		VE+AR+MC	66	23	48	494.94	-1.38	60.73
		VE	66	02	34	274.73	39	62.44
STS	606N	AR+MK+EI+GS	322	43	71	1024.98	-2.99	77.57
		VE+AR+MC	322	32	65	806.48	-2.83	81.54
		VE	322	15	47	495.20	-3.21	85.08
STS	6277	AR+MK+EI+GS	112	41	69	1116.01	-3.23	89.59
		VE+AR+MC	112	23	59	764.20	-2.36	95.76
		VE	112	08	43	472.95	-2.15	97.98

The correlational results for the AX-6232, AT-6230, and AQ-6231 BE/E schools showed that changing to the proposed alternate composite (VE + AR + NO + CS) would reduce predictiveness of school performance. For AX-6232, the change would result in a decrease of .11 in both the uncorrected and corrected validity coefficients. For AT-6230, there would be a decrease of .10 in both the uncorrected and corrected validity coefficients. For AQ-6231, there would be a decrease of .04 and .05 respectively in the uncorrected and corrected validity coefficients. Expectancy analyses of the VE + AR + NO + CS composite were not conducted for these three BE/E schools because the correlational data did not reveal it to be a promising alternate composite.

Overall, it appears that for the EM and QM schools, a change to the proposed ASVAB selector composite would improve prediction of training performance, but for the AX, AT, and AQ schools, use of the proposed ASVAB selector composite (VE + AR + NO + CS) would not improve prediction of performance.

Validity of AFQT

In general, the AFQT is moderately predictive of both FSG and TIME. For "A" schools using an FSG criterion, the median uncorrected and corrected AFQT validity coefficients were .31 and .52 respectively. For "A" schools using a TIME criterion, the median uncorrected and corrected validity coefficients were -.31 and -.44 respectively; the corresponding validity coefficients for BE/E schools, all of which use a TIME criterion, were -.32 and -.55 (see Appendix A).

Sex and Race Subgroups

Validity of ASVAB School Selector Composites

As shown in Table 9, of the eight schools for which validity and regression results were computed separately for males and females, in four schools the (uncorrected) correlation coefficient for the males was higher and in four the coefficient for the females was higher. The DP-6167 and MS-6125 "A" schools were the only schools having sufficient data (at least 75 males and females) to permit analyses of differences between sex subgroup regression equations, using the moderated multiple regression technique recommended in Bartlett et al. (1978). These analyses revealed that in both schools, the regression slopes, but not the intercepts, of the ASVAB school composite were significantly different for the two sex groups. For both schools, use of the male regression equation for prediction of FSG for females would result in overprediction of performance for the lower half of the ASVAB composite score range and underprediction for the upper half of the score range.

As further shown in Table 9, ASVAB composite validity and regression results were computed separately for blacks and whites for eight schools (a different combination of schools than was used for analyses of males and females). For all but one of these schools, the (uncorrected) validity coefficient for the white subgroup was higher than the validity coefficient obtained for the blacks.

Multiple regression analyses of race subgroup regression equations were performed for the MS-6125 and SH-6477 "A" schools. Analysis of the MS-6125 school sample revealed that neither the slopes nor the intercepts of the ASVAB school composite were significantly different for the two race subgroups. Multiple regression analysis of the SH-6477 schools revealed that the intercepts, but not the regression slopes, of the ASVAI composite were significantly different for the two race subgroups. Use of the whit

Table 9

Validation Statistics by Subgroup in 16 "A" Schools for Current ASVAB Selector Composites

Rating Code	Course	Selector Composite	Sex	Z	Selector	for G	Criterion Mean SF	rion	ت	ړ	Inter- cept	Slope	Error
				Male	and Female Subgroups	ile Sub	groups						
CTR	6301	VE+AR	₹	97	112.0	6.6	92.3	5.0	₹	62	62.0	.27	4.24
			Ŀ	£3	110.3	9.6	93.2	3.0	77	2	74.0	.1.	7.47
CTT	6362	VE+AR	₹	185	110.7	10.0	7.06	5.5	62	70	53.0	34	4.79
			Ŀ	7,	108.9	4.7	90.3	5.1	53	62	1.09	.28	4.34
5	6.16.7	VE.AR	≯	214	117.3	÷.	96.5	۲.۲	200	~	8.16	ŧ0.	٠٠.٠
			<u>:</u>	<u>\$</u>	116.0	7.7	96.3	3.6	33	ž.	73.9	<u>=`</u>	1.17
∕ \	6123	VE·AR	≱	1413	102.2	ą. 6	86.1	5.4	45	ζ.	\$.5	.26	4.82
			Ŀ	168	7.76	8.4	85.1	5.6	\$	70	48.5	٦٤.	4.69
£	6477	VE+AR	≯	\$55	0.401	7.0	88.9	æ. •	7	8	76.3	.12	4.80
			Ľ.	04	105.2	7:	91.3	4.3	64	2	60.5	. 29	3.82
CTA	6020	VE+NO+CS	>	×	172.0	6.3	95.0	5.5	9	47	64.9	<u>∞</u>	5.35
			ţ <u>L</u>	69	175.5	<u>.</u>	96.2	3.8	<u>*</u>	54	85.8	90.	3.78
TMT	6093	4R+2MK+GS	₹	9#1	221.3	17.5	88.0	4.9	22	35	74.4	90.	4.87
			tı.	ż	219.5	16.7	87.5	9.6	32	δ 2	63.7	=	5.36
ИR	8909	AR+MC+AS	₹	168	171.7	12.2	82.1	0.9	47	99	42.3	.23	5.36
			ᄕ	92	163.5	10.4	77.4	5.2	23	42	58.7	.12	5.13
				Wnite	Write and Black Subgroups	k Subg	roups						
L	6302	VE+AR	≱	210	111.3	10.2	90.9	5.3	25	17	53.3	36	3
		1	ď	47	105.2	6.9	89.3	2.0	76		69.0	61	16.4
90	6167	VE+AR	≱	128	117.0	6.9	96.5	3.5	22	37	83.5	=	3.42
			£	42	114.7	7/ 00	0.96	3.0	54	46	82.1	.12	2.92
۸ş	6125	VE+AR	∌	1202	103.3	9.5	86.5	5.4	47	52	59.3	.26	4.80
			Œ	306	96.1	٤,۶	84.1	5.2	3 6	44	63.7	.21	5.04
S.	1009	VE+AR	≱	604	1.01	1.01	87.8	7.4	46	2 ¢	45.5	. 34	6.60
			æ	64	0.101	7.4	77.7	6.0	17	28	63.5	, <u>.</u>	5.93
£	6477	VE+AR	∌	416	105.1	7.4	88 88	٠. م	23	۲۲	72.0	91.	06.4
			a:	147	5.101	5.5	89.6	⊅ .	9	=	r. ∨ 00	.0°	4.37
511	6009	VE+AR	∌	342	11.4 11.4	7.4	91.4	5.6	33	∑	63.4	.25	5.27
			ø;	&	108.8	5.5	91.3	9.6	<u>~</u>	*	72.9	.17	5.65
EVI	6070	AR+2MK+GS	∌	549	224.1	20.9	8.92	6.2	3.5	94	53.9	<u>o</u>	5.74
			Œ	53	207.7	8.61	75.1	5.1	35	44	58.0	.08	16.4
∑	6036	AR+2MK+GS	≱	170	202.2	9.61	85.8	5.4	37	7	65.0	01.	66.9
			Œ	42	193.8	19.2	83.5	7.9	23	53	70.7	.07	6.32
				-									

Note. Decimal points have been omitted from validity coefficients.

^aStandard error of estimate.

regression equation for prediction of FSG for blacks would result in underprediction for nearly the entire ASVAB composite score range.

Validity of AFQT

Of the eight schools for which AFQT validity and regression results were calculated separately for males and females, the (uncorrected) correlation coefficient for males was higher in four schools and the coefficient for females was higher in the other four (see Table 10). These results are the same as were obtained for the sex analyses of the ASVAB school composite, shown in Table 9.

Multiple regression analysis of the DP-6167 and the MS-6125 "A" schools indicated in both that the slopes, but not the intercepts, were significantly different for the sex subgroups. For both schools, use of the male AFQT regression equation for prediction of FSG for females would result in overprediction of the lower half and underprediction for the upper half of the AFQT score range. Again, these results are the same as those obtained for the multiple regression analyses of the ASVAB school selector by sex subgroup.

In eight schools, validity and regression results were calculated separately for race subgroups. As Table 10 shows, the AFQT validity coefficients for whites were higher than those obtained for blacks for all but one school. These findings are the same as for the race analyses of the ASVAB school composites (Table 9).

Multiple regression analysis of race subgroup differences on the AFQT for the MS-6125 school indicated that the intercepts, but not the slopes, were different for the race subgroups. Although statistically significant, the intercepts actually differed by less than one score point (see Table 10), a difference of dubious practical significance. Use of the white equation for blacks would result in a trivial degree of overprediction of FSG-generally less than one score point—for virtually the entire AFQT score range. For SH-6477, both the slopes and the intercepts of the AFQT were significantly different for the two race subgroups. Use of the white regression equation for blacks would result in underprediction of FSG for virtually the entire AFQT score range.

DISCUSSION AND CONCLUSIONS

Total School Samples

Validity of ASVAB School Selector Composites

In general, the operational Navy ASVAB 8, 9, 10 school selector composites predicted performance reasonably well in Navy technical schools. The overall median validity coefficients of ASVAB school selectors for "A" schools with an FSG criterion (r_u = .35, r_c = .55) were somewhat lower than those found by Swanson (1979) in his validation of ASVAB Forms 6 and 7 (r_u = .43, r_c = .73). This difference appeared attributable to the larger proportion of electronics schools with an FSG criterion that were included in Swanson's study. In both Swanson's and the present research, the electronics composite is typically the most predictive ASVAB selector composite.

Table 10

Validation Statistics by Subgroup in 16 "A" Schools for AFQT

Rating Code	Course Code	Sex	N	Mean	SD	r _u	r _c	Inter- cept	Slope	Error ^a
		•	Ma	ale and F	emale S	ubgrou	ps			
CTR	6301	M F	97 43	67.4 66.9	17.8 17.1	.53 .46	.62 .55	82.1 86.4	.15	4.25 3.44
CTT	6302	M F	185 74	65.8 64.2	17.1 16.6	.59 .46	.68 .57	78.2 81.3	.19 .14	4.41 4.54
DP	6167	M F	215 158	74.4 75.6	12.3 13.4	.12	.17 .57	94.2 88.8	.03 .10	3.28 3.41
MS	6125	M F	1413 168	49.2 43.0	16.7 15.7	.45 .56	.76 .70	78.9 76.5	.14 .20	4.85 4.69
SH	6477	M F	555 40	51.8 56.5	13.2 13.5	.17	.29 .71	85.5 82.2	.06 .16	4.79 3.76
CTA	6020	M F	38 69	59.7 60.2	20.2 17.8	.37	.51 .23	88.9 94.3	.10 .03	5.20 3.77
TMT	6093	M F	148 54	62.4 68.7	16.9 14.8	.25 .38	.37 .53	83.4 77.6	.07 .14	4.80 5.23
MR	6068	M F	168 2 6	59.1 72.6	16.5 18.2	.26 .19	.51 .38	76.5 73.6	.10	5.85 5.22
			W	hite and	Black S	ubgrou	ps			
СТТ	6302	₩ B	210 47	67.0 58.0	17.2 13.3	.62 .17	.69	78.1 85.5	.19	4.22 5.01
DP	6167	W B	327 42	75.4 71.1	13.0 11.1	.23	.38 .40	91.7 9 3. 6	.06 .03	3.41 2.99
MS	6125	W B	1202 306	51.2 39.1	16.9 12.0	.46 .25	.56	78.9 79.8	.15	4.80 5.06
QM	6001	w B	408 49	61.7 46.3	18.4 12.4	.46 .13	.54 .25	71.3 74.8	.19	6.59 5.97
SH	6477	₩ B	416 147	54.1 47.1	13.5	.26 .05	.39	83.7 88.7	.10	4.87 4.37
SM	6005	W B	342 29	63.1 61.2	14.2 9.6	.39 .27	.54 .41	81.7 81.5	.15	5.14 5.51
ЕМ	6070	W B	27 l 53	64.4 49.6	17.9 19.2	.34	.45 .50	69.1 69.7	.12	5.79 4.74
TM	6036	W B	170 42	49.3 37.8	16.3 17.0	.40	.52 .35	79.3 79.7	.13	4.94 6.20

Note. Decimal points have been omitted from validity coefficients.

^aStandard error of estimate.

The overall median validity coefficients of the ASVAB school selectors for predicting TIME, particularly for the BE/E schools (r_u = -.36, r_c = -.57) tended to be higher than those reported by Swanson (r_u = -.21, r_c = -.36), probably as a result of a difference in the criterion definition: In Swanson's research, TIME included all the days between start and completion of the course. This was a rather inexact measure because it could have included a few nontraining days for some students. In the present research, TIME consisted of the precise number of hours spent in training.

It is interesting that the median validity coefficients of the current ASVAB selector composites for "A" schools with a TIME criterion ($r_u = -.27$, $r_c = -.42$) were markedly lower than those obtained for BE/E schools with a TIME criterion ($r_u = -.36$, $r_c = -.57$), or for "A" schools with an FSG criterion ($r_u = -.35$, $r_c = -.55$). It could be argued that, compared to FSG, time required to complete training is probably more influenced by motivational and personality factors and less influenced by ability (which the ASVAB is intended to measure). However, that the validity of the ASVAB selectors for predicting TIME in BE/E schools was as high as for predicting FSG in "A" schools undermines this explanation. Moreover, this finding suggests that TIME, when defined as the precise number of hours spent in training, is potentially as predictable by the ASVAB as final school grade.

Why, then, were the ASVAB school selector composites found less effective for predicting TIME in "A" schools than for either TIME in BE/E schools or FSG in "A" schools? Since this study included only 12 "A" schools that use a TIME criterion (as compared to 35 "A" schools that use FSG and 53 BE/E schools that use TIME), this low validity may have been simply due to pecularities or imprecision in the measurement of time in training for these 12 schools. That these 12 "A" school samples were more highly restricted in ability than the BE/E school samples may have contributed to the low validity coefficients because, all else being equal, reduced sample variance results in reduced validity coefficients.

Proposed Changes in ASVAB School Selector Composites

For a large portion of the schools in this study (39 out of 100), one or more alternate ASVAB composites predicted training performance significantly better than did the operational composite, partly because there is not enough differential prediction among the current ASVAB composites. The differential prediction of the ASVAB could be improved by reducing the number of composites. There are presently 12 Navy composites in use, not including the AFQT, several of which are very highly interrelated. The possibility of eliminating redundant composites is currently being investigated.

Despite the appearance that alternate ASVAB composites would often predict performance better than do the current composites, for most schools a change in selector composites was not warranted, for some of the following reasons: (1) The proposed change was not supported by validity data from the present study for related schools, (2) the proposed change was not supported by validity data from earlier studies for the same or related schools, (3) the proposed change would not be logically valid, given the content of the course and of the job, and (4) the composites found to be significantly more valid than the current composite are not presently used by the Navy, and there does not appear to be adequate justification for adding them to the set of current Navy selectors composites. However, based on the results of the correlational and expectancy analyses.

two "A" schools, EM-6070 and QM-6001, were identified for which it appeared that a change of selector composites would substantially improve prediction of school performance (FSG).

For the EM "A" school, using the proposed composite (AR + MK + EI + GS) with a cutting score of 200 would result in an increase in validity for predicting final school grade, an increase in the number of expected graduates, and a decrease in the number of expected drops. Because EM BE/E school is a prerequisite for EM "A" school, however, a change in the selector composite for the "A" school would require a change in the selector for the corresponding BE/E schools, of which there are three (6258, 6273, and 6303). Correlational results suggested that a change to AR + MK + EI + GS would neither improve nor impair prediction of performance (TIME) in the EM BE/E schools to any substantial extent. Expectancy analysis results showed that use of the proposed composite would result in more graduates and fewer drops than are yielded with the current composite (AR+2MK+GS). Overall, a change in operational ASVAB selector composites for the EM schools seems warranted (see Table 11).

For the QM "A" school, which has no prerequisite BE/E school, a change to the proposed composite (AR + 2MK + GS) with a cutting score of 190 would result in an increase in validity for predicting FSG, a greater number of graduates, and fewer drops than occur with the current composite (VE + AR). Thus, a change in the ASVAB selection criteria for this school appears warranted (see Table 11).

The ASVAB validity results obtained (for total school samples) in this study may be regarded with a reasonable degree of confidence because most of the samples used were fairly large and because the results were generally consistent with those obtained in earlier ASVAB validations.

Validity of AFQT

While the AFQT is not used to select students for Navy technical schools, it is, nevertheless, regarded as a general measure of cognitive ability and therefore would be expected to be reasonably predictive of school performance. In fact, the results for the AFQT were very similar to those obtained for the ASVAB school selector composites. AFQT was found to be moderately predictive of training performance for the "A" and BE/E schools in this research.

Sex and Race Subgroups

The results obtained for the sex and race subgroups should be evaluated with caution and regarded as suggestive, rather than conclusive, because the samples analyzed were small. Only a small fraction of the 100 schools used in the study (the DP and MS "A" schools for the sex analyses and the SH and MS "A" schools for the race analyses) had even marginally sufficient quantities of data to permit use of the moderated multiple regression strategy (Barlett et al., 1978), which appears to be the most appropriate method for evaluating differential prediction of subgroup samples.

Validity of ASVAB School Selector Composites

Comparisons of the validity coefficients of ASVAB school selector composites for males and females (in eight schools) did not reveal a systematic tendency for higher validity coefficients to be obtained for either sex group; however, the nore appropriate moderated nultiple regression technique detented male and female slope differences for

Table 11 Proposed Changes in Selector Composites by Technical School

Rating Code	Course	7 .	Current Selector Composite	ت	رُن	Proposed Selector Composite	ړی	رِ	Criterion
1 4 4	6070(A)	369	BE/E(AR+2MK+GS)	35	44	ELEC(AR+MK+EI+GS)	64	48	FSG
	6258(RF/E)	067	BE/E(AR+2MK+GS)	-39	-55	ELEC(AR+MK+EI+GS)	-35	-53	FSG
- 5	(3/3G)C(2)	696	BE/E(AR+2WK+GS)	19-	-70	ELEC(AR+MK+EI+GS)	09-	-79	TIME
5 J	(3/3G)C(2)	191	BE/E(AR+2MK+GS)	-27	94-	ELEC(AR+MK+EI+GS)	-29	94-	TIME
1 N O	6001(A)	473	GT(VE+AR)	147	24	BE/E(AR+2MK+GS)	52	28	FSG

Note. Decimal points have been omitted from correlation coefficients.

both of the schools analyzed. Thus, separate within-group regression equations would be required to best represent the relationship between ASVAB composite and final grade. Furthermore, either (1) different selection criteria should be used for each sex group, or (2) selection variables that would reduce differential prediction of performance for sex subgroups without markedly reducing predictive accuracy should be sought. Because of the tentative nature of these findings, however, no firm conclusions are drawn at this time; further investigation of these issues is needed.

The ASVAB school selector composite appeared somewhat more valid for whites than for blacks in seven out of eight schools. The moderated multiple regression analyses revealed neither a slope nor an intercept difference for the MS-6125 school, and an intercept (but no slope) difference for the SH-6477 school. These findings suggest that only a single regression equation is needed for MS-6125, and also that steps should be taken to reduce differential prediction for blacks and whites in SH-6477. Again, these findings should be regarded as tentative.

Validity of AFQT

For the analyses of sex subgroups, the findings for the AFQT were virtually the same as for the ASVAB school selector composites, but the AFQT findings for the race subgroup analyses were different. The validity of the AFQT was higher for whites than for blacks in seven out of eight schools; in addition, a small but significant intercept difference was found for the MS-6125 school and slope and intercept differences were found for SH-6477. While it appears that changes in the selection measures used for these schools may be warranted, again, further investigation of this issue will be required before any firm conclusions can be drawn.

RECOMMENDATIONS

- 1. To improve prediction of performance in two "A" schools (EM-6070, OM-6001) and three BE/E schools ((EM-6258, EM-6273, EM-6303), the proposed ASVAB 8, 9, and 10 composites presented in Table 11 should be adopted.
- 2. Further research should be conducted to improve the ASVAB's differential prediction of performance across Navy technical schools.
- 3. Further research should be conducted to determine whether the use of the ASVAB school selector composites or the AFQT may result in differential prediction of performance for sex or race subgroups.

REFERENCES

- American Psychological Association, American Educational Research Association, & National Council on Measurement in Education. (1974). Standards for educational and psychological tests. Washington, DC: American Psychological Association.
- Alf, E. F., Gordon, L. C., Rimland, B., & Swanson, L. (1962). The development and validation of Form 7 of the Navy Basic Test Battery (NPRA Report No. 202). San Diego: Navy Personnel Research Activity.
- Bartlett, C. J., Bobko, P., Mosier, S. B., & Hannan, R. (1978). Testing for fairness with a moderated multiple regression strategy: An alternative to differential analysis. Personnel Psychology, 31, 233-241.
- Booth-Kewley, S. (1984). Validation of the Armed Services Vocational Apritude Battery (ASVAB) selection criteria for the Strategic Weapons Systems Electronics "A" School (NPRDC Tech. Rep. 84-22). San Diego: Navy Personnel Research and Development Center. (AD-A139 029)
- Johnson, P. O. (1949). Statistical methods in research. New York: Prentice-Hall.
- Swanson, L. (1979). Armed Services Vocational Aptitude Battery, Forms 6 and 7: Validation against school performance in Navy enlisted schools (July 1976 February 1978) (NPRDC Tech. Rep 80-1). San Diego: Navy Personnel Research and Development Center. (AD-A077 158)
- Thomas, P. J. (1970). Validation of Form 7 of the USN Basic Test Battery in 108 "A" schools (NPTRL Tech. Bulletin STR 70-7). San Diego: Naval Personnel and Training Research Laboratory.
- Thomas, P. J., & Thomas, E. D. (1967). <u>Validation of Form 7 of the USN Basic Test</u>
 Battery in 108 Class "A" schools (NPRA Tech. Bulletin STB 68-4). San Diego: Naval
 Personnel Research Activity.
- Thorndike, R. L. (1949). <u>Personnel selection: Test and measurement techniques</u>. New York: John Wiley & Sons.

APPENDIX A

BIVARIATE AND MULTIPLE CORRELATIONS BETWEEN PRIMARY PREDICTOR SCORES AND SCHOOL PERFORMANCE

Table A-1

Bivariate and Multiple Correlations Between Primary Predictor Scores and School Performance for 11 "A" Schools Using the General Technical (VE + AR) Composite

Rating School Criterion <u>N</u>	ABE 6513 FSG 72		ABF 6512 FSG 96		65 F3	BH 527 SG 59	CTR 6301 FSG 140		CTT 6302 FSG 259		CTT 6320 FSG 63	
Predictor	r _u	rc	r _u	rc	r _u	rc	r _u	rc	r _u	rc	r _u	rc
				A	SVAB	Tests						
GS	38	53	39	49	47	57	33	43	40	51	17	29
AR	31	49	32	45	29	45	40	51	56	65	44	53
wK DC	27	45	25 26	39	34	47	38	49 52	36	48	22	36
PC NO	30 06	47 -01	26	38	29	41	44 24	53	36	46	36	45
NO CS	-06 09	-01 19	03 02	03 10	13 14	24 20	24 36	29 42	13 27	17 32	02 33	35
AS	44	53	40	49	56	63	11	19	32	41	 40	35 47
AS MK	36 ·	50	20	29	30	43	48	56	54	63	40	55
MC	45°	56	35	46	47	55	21	31	36	46	35	44
EI	30	39	38	48	54	61	18	27	31	41	22	30
VE	30	48	27	41	38	50	44	53	39	51	29	41
R9	58	40	52	71	63	30	56))	64	.,1	65	41
***			Nav	vy Se	lector	r Comp	oosite	es			,	
GT	41	56	38	50	42	54	50	.59	60	68	44	5.3
MECH	50	61	44	54	60	67	28	38	42	53	43	52
ELEC	50	62	47	56	54	63	45	54	57	66	42	52
CLER	12	29	15	28	30	43	44	52	36	45	34	42
AM	47	60	37	49	53	62	36	47	44	55	38	48
BE/E	46	59	38	49	41	53	49	57	59	67	48	56
BT/EN/MM	54	64	41	51	5.5	63	37	47	5.3	52	52	59
CT	21	40	40	51	33	47	49	57	50	60	44	53
HM	44	58	24	39	48	58	49	57	5.5	64	39	49
MR	52	62	46	56	5.7	65	28	40	48	58	49	5.7
SUB	50	62	41	52	52	61	43	53	5.5	6.5	45	54
ELEC Comp	48	60	45	5.5	56	64	41	51	52	63	36	46
AFQT	32	51	38	50	39	52	51	59	56	65	39	50

Table A-I (Continued)

Rating School Criterion N	FS	167	FS	125	QM 60 FS 47	01 G	SH 64 FS 59	77 G	SN 60 FS 37	005 SG
Predictor	r_u	r _c	r _u	r _c	$\mathbf{r}_{\mathbf{u}}$	rc	r	r _c	r _u	r _c
				A	SVAB '	Tests	· · · · · · · · · · · · · · · · · · ·			
GS	12	27	36	46	29	37	11	23	17	36
AR	16	35	38	50	47	53	08	24	31	49
WK	10	29	31	43	27	36	17	29	11	32
PC	11	26	26	37	25	33	14	26	13	32
NO	19	28	15	19	26	30	04	80	31	38
CS	16	26	16	20	32	36	10	15	32	42
AS	09	22	26	35	24	30	60	17	10	21
MK	25	39	3 ა	46	50	56	24	33	31	48
AC .	14	28	30	40	43	49	04	16	20	37
F. I	15	28	29	38	26	33	13	22	16	31
VE	19	36	33	45	29	38	17	30	13	36
R9	31		50		57		31		44	
			Na	vy Se	lecto	r Comp	posit	es		
GT	23	39	47	57	47	54	19	32	32	50
MECH	16	32	38	48	40	47	12	25	19	38
ELEC	24	39	48	57	49	55	22	33	33	50
CLER	23	36	30	40	39	46	15	25	38	51
AM	19	35	38	49	42	50	12	26	21	42
BE/E	25	40	46	56	52	58	22	34	34	51
BT/EN/MM	21	37	40	50	49	55	20	31	28	45
CT	25	39	38	49	47	54	16	29	43	56
НМ	25	40	45	55	44	52	23	35	28	47
MR	16	33	40	51	47	54	ÚÝ	24	25	44
SUB	21	38	46	56	50	56	14	29	30	49
ELEC Comp	23	38	45	54	45	51	22	33	29	47
AFQT	23	39	46	56	47	53	20	33	39	54

Table A-2

Bivariate and Multiple Correlations for Primary Predictor Scores
Against School Performance for Nine "A" Schools Using the
Mechanical (VE + MC + AS) Composite

Rating School Criterion <u>N</u>	62 FS	BU 6286 FSG 203		CM 6291 FSG 79		E0 6292 FSG 181		IT 025 SG 0		106 SG	F	T 119 SG 90
Predictor	ru	rc	ru	r _c	r	r _c	r _u	rc	ru	r _c	r _u	r
				A	SVAB	Tests		· · · · · · · · · · · · · · · ·				
GS	09	39	08	22	11	25	45	68	13	23	30	53
AR	37	57	27	33	28	37	37	54	10	21	29	52
WK	09	44	-08	08	10	26	43	66	-08	10	24	5 1
PC	26	51	-06	08	09	22	33	59	-08	07	24	46
NO	11	15	-02	06	00	-07	21	20	-08	-07	07	1 1
CS	20	35	14	17	02	01	26	22	15	22	17	26
AS	24	55	29	40	16	31	14	49	18	28	18	48
MK	32	49	11	25	30	38	35	54	00	15	32	53
MC	42	66	25	38	18	33	32	61	19	29	21	5 :
EI	18	47	13	26	07	22	18	45	09	21	29	52
VE	15	48	-09	08	10	26	43	67	-11	09	27	53
R9	52		44		36		58		52		45	
			Nav	vy Se	lecto	r Com	posite	es				
GT	36	61	15	29	26	38	49	69	03	18	34	57
MECH	43	67	23	37	22	36	48	71	13	25	34	59
ELEC	37	62	21	35	29	40	50	71	10	23	42	62
CLER	21	45	03	13	05	09	42	56	-01	09	22	4
AM	39	65	13	30	19	34	50	72	06	21	31	57
BE/E	36	58	18	32	33	42	46	66	07	20	39	59
BT/EN/MM	39	63	24	37	31	41	40	66	09	23	35	58
CT	31	54	13	25	16	24	45	61	04	16	29	5 1
HM	27	56	06	23	26	38	50	71	02	17	40	6.
MR	49	70	34	43	29	40	44	69	20	29	32	58
SUB	45	68	22	36	28	40	53	73	10	23	34	59
ELEC Comp	29	57	15	30	25	37	48	70	80	21	42	62
AFQT	32	58	10	25	22	34	46	66	-02	13	32	56

Notes. Decimal points have been omitted from correlations $r_{\rm H} = {\rm Uncorrected\ validity}; \; r_{\rm C} = {\rm Corrected\ validity}.$

Table A-2 (continued)

Rating	HT		Si		נט		
Schoo!		120		288		290	
Criterion	FS			SG	FS		
$\overline{\mathbf{N}}$	29	3,	8.	5	77	1	
Predictor	$r_{\mathbf{u}}$	rc	r _u	rc	r _u	r _c	
				A	SVAB	Tests	
GS	14	38	06	18	11	18	
ΛR	31	49	04	15	32	35	
WK	16	39	02	15	07	15	
PC	28	47	18	27	17	23	
NO .	17	13	-07	-09	18	15	
CS	16	12	19	16	01	01	
AS	14	43	13	25	18	25	
MK	28	44	08	18	42	45	
MC	19	46	23	32	02	13	
EI	16	42	-11	04	17	23	
VE	21	45	07	19	11	19	
R9	41		48		51		
			Na	vy Se	lecto	r Comp	posites
GT	33	53	07	20	29	34	· .
MECH	30	54	20	31	15	2 3	
ELEJ	34	55	03	17	40	43	
CLER	24	32	09	13	14	17	
AM	28	53	20	30	80	18	
BE/E	32	51	08	20	45	48	
BT/EN/MM	31	53	13	25	41	43	
CT	31	45	09	17	24	27	
HM	23	51	09	21	34	38	
MR	33	55	16	27	26	31	
SUB	35	56	15	27	23	29	
ELEC Comp	29	51	02	16	35	39	
		52	05	17	30	35	

 $\frac{\rm Notes}{\rm r_u} = {\rm Uncorrected\ validity;\ r_c} = {\rm Corrected\ validity.}$

Table A-3

Bivariate and Multiple Correlations for Primary Predictor Scores
Against School Performance for 13 "A" Schools Using the
Electronics (AR + MK + EI + GS) Composite

Rating School Criterion	6 T	6501 Time		6240 6. Time T		5239 6 Time T		X 241 ime 88	DS 6131 FSG 118		6 T	W 02A ime 00
Predictor	ru	rc	ru	rc	ru	rc	ru	rc	ru	r _c	ru	rc
				1	NSVAB	Tests	3				**************************************	·
GS	-17	-34	-11	-32	-07	-25	-05	-29	-05	36	-11	-33
AR	-29	-44	-24	-42	-21	-36	-27	-44	34	56	-2 5	-41
WK	-18	-32	-20	-35	-12	-27	-16	~ 35	05	37	-21	-36
PC	-18	-31	-16	-30	-09	-22	-27	-42	17	42	-17	-32
NO	-13	-17	-24	-33	-21	-26	-22	-26	11	22	-16	-25
CS	-15	-17	-26	-36	-24	-29	-31	-37	27	45	-21	-30
AS	-25	-37	-20	-33	-14	-26	-13	-29	05	29	-12	-26
MK	-26	-42	-19	-38	-21	-36	-23	-41	42	61	-13	-35
MC	-25	-39	-21	-37	-17	-30	-18	-36	16	41	-02	-21
EI	-19	-36	-10	-29	-14	-30	-16	-35	06	39	-02	-23
VE	-18	-32	-21	-36	-12	-27	-21	-39	10	41	-22	-38
R9	41		40		35		43		56		34	
		 -	Na	vy Se	lecto	r Com	posit	es				
GT	-31	-46	-28	-44	-21	-36	-29	-46	28	54	-29	-44
MECH	-29	-43	-27	-42	-19	-33	-22	-40	13	43	-16	-34
ELEC	-35	-50	-26	-43	-24	-38	-28	-45	32	57	-20	-39
CLER	-22	-31	-34	-46	-27	-36	-35	-46	25	48	-26	-39
AM	-27	-42	-26	-42	-18	-33	-23	-41	17	46	-14	-33
BE/E	-32	-48	-24	-42	-23	-37	-26	-44	42	61	-19	-39
BT/EN/MM	-36	-50	-27	-44	-24	-38	-26	-44	35	5.7	-17	-37
CT	-29	-42	-35	-48	-30	-41	-38	-51	31	54	-29	-43
HM	-29	-45	-25	-43	-19	-35	-23	-43	25	53	-20	-39
MK	-34	-48	-29	-45	-23	- 37	-25	-43	22	49	-18	-37
SUB	-33	-48	-30	-46	-23	-37	-28	-45	28	54	-23	-41
ELEC Comp	-31	-47	-22	-41	-21	-36	-23	-43	24	53	-14	-37
AFQT	-32	-47	-33	-47	-25	-38	-34	-49	26	52	-30	-45

Table A-3 (continued)

Rating School Criterion	EW 602D Time 408		FTG 6376 FSG 117		FTG 6377 FSG 245		FTM 6027 FSG 172		FTM 6108 FSG 134		Sk 61 FS 18	.46 G
Predictor	r_{u}	r _c	r _u	r _c	r _u	^r c	r _u	r _c	r u	r _c	r _u	r _c
				Λ	SVAB	Tests			***			
GS	-12	-34	21	56	20	47	21	64	17	54	19	52
Ak	-28	-44	26	61	22	49	33	68	28	58	26	57
WK	-14	-31	14	49	15	40	35	67	29	57	10	37
PC	-08	-26	15	45	21	43	25	54	28	56	14	40
NO	-15	-25	19	34	14	25	: 1	12	02	J1	06	05
CS	-21	-30	08	26	12	22	17	24	21	27	80	12
AS	-14	-28	16	38	22	41	20	48	21	41	20	4
MK	-11	-34	48	72	27	53	44	74	44	68	30	59
MC	00	-20	37	59	27	48	21	53	21	48	27	50
EI	-03	-25	14	5 3	07	37	28	65	14	50	26	5€
VE	-13	-32	16	52	20	45	36	68	29	59	10	39
R9	35		59		41		60		55		43	
			Nav	vy Se	lecto	r Com	posite	es				
GT	-26	-43	27	63	27	53	42	74	36	64	25	57
MECH	-12	-32	32	61	32	54	32	6 5	32	59	26	51
ELEC	-21	-41	45	72	32	57	52	80	42	68	41	6
CLER	-23	-37	19	47	20	39	25	43	22	39	10	22
AM	-07	-29	35	6 3	31	54	35	68	32	61	25	5.
BE/E	-19	-40	50	74	32	57	50	78	45	69	37	6
BT/EN/MH	-17	-38	48	72	34	5.7	47	76	4€	69	36	6
CT	-28	-43	24	56	24	47	32	59	2.	51	i7	4(
HM	-16	-38	42	70	32	57	47	77	4.2	58	31	6:
MR	-19	-38	37	ó5	33	56	32	67	33	61	32	ы
SUB	-19	-39	40	69	35	58	41	74	37	65	32	6
ELEC Comp	-13	-37	44	71	28	5.5	48	78	37	66	38	ઇ
AFQT	-26	-43	27	61	27	52	40	71	31	60	22	5

 $\frac{\text{Notes}}{r_u}$. Decimal points have been omitted from correlations $\frac{r_u}{r_u}$ = Uncorrected validity; r_c = Corrected validity.

Table A-3 (continued)

Rating School Criterion	6	D 242 'ime	303
Predictor	ru	r _c	
			ASVAB Tests
GS		-23	
AR	-20	-35	
WK	-09	-25	
PC NO	-08 -17	-21 -23	
CS	-22	-23 -27	
AS	-12	-24	
MK		-32	
MC	-22	-35	
EI	-21	- 35	
VE	-08	-24	
R9	39		
			Navy Selector Composites
GT	-17	-33	
MECH		-33	
ELEC	-23	-37	
CLER	-23	-33	
AM	-20	-35	
BE/E BT/EN/MM	-18 -19	-34 -34	
CT CT	-19 -26	-38	
НМ	-13	-31	
MR	-23	-37	
SUB	-23	-37	
ELEC Comp	-20	-36	
AFQT	-21	-36	

 $\frac{\text{Notes}}{\text{r}_u}$ = Uncorrected validity; r_c = Corrected validity.

Table A-4

Bivariate and Multiple Correlations for Primary Predictor Scores
Against School Performance for One "A" School Using the
Clerical (VE+NO+CS) Composite

Rating	C	ΓA	
School	60	020	
Criterion	F	SG	
$ar{\mathbf{N}}$	10	07	
Predictor	$r_{\mathbf{u}}$	r _c	
	-	-	ASVAB Tests
GS	17	22	
AR	23	33	
WK	22	33	
PC	19	29	
NO	-04	19	
CS	14	30	
AS	0 6	13	
MK	13	25	
MC	23	28	
ΕI	06	16	
VE	23	34	
R9	40		
		· · · · · · · · · · · · · · · · · · ·	Navy Selector Composites
GT	26		
MECH	21	30	
ELEC	19	30	
CLER	23	37	
AM	27	36	
BE/E	19	30	
BT/EN/MM	13	25	
CT	27	39	
HM	20	31	
MR	21	30	
St'B	28	38	
ELEC Comp	15	26	
Dime comp			

Table A-5

Eivariate and Multiple Correlations for Primary Predictor Scores Against School Performance for Five "A" Schools Using the BE/E (AR+2MK+GS) Composite

Rating School Criterion	CE 61 FS 12	289 SG	EN 60 FS 36	70 S G	Т	C 05Z ime 58	FS	1 936 5G 19	60 F	IT 093 SG 02
Predictor	r _u	r _c	ru	rc	r _u	rc	ru	r _c	r _u	r _c
the transport of the section of the				Λ	SVAB	Tests				
GS	15	28	25	35	-18	-34	27	40	31	42
AR	25	37	33	42	-31	-46	37	49	17	32
WK	26	36	14	24	-21	- 35	28	39	26	37
PC	07	16	21	30	-26	-37	20	32	20	29
NO	13	17	18	23	-23	-29	06	12	08	16
CS	09	13	21	27	-22	-27	09	13	09	16
AS	22	28	20	25	-26	-36	31	40	28	36
MK	18	33	27	38	-23	-41	22	39	11	31
MC	34	42	27	35	-21	-34	37	46	23	34
ΕI	15	26	33	39	-23	-35	27	37	23	33
VE	23	33	17	27	-25	-38	29	41	29	39
R9	41		44		44		48		40	
			Nav	vy Se	lecto	r Comp	posite	98		
GT	30	40	29	39	-33	-47	40	51	28	41
MECH	33	41	26	35	-30	-43	40	50	34	44
ELEC	25	37	40	48	-34	-48	39	50	31	43
CLER	22	31	26	35	-33	-43	23	34	21	32
AM	34	43	26	36	-27	-41	40	50	32	55
BE/E	24	37	35	44	-32	-47	35	47	25	39
BT/EN MM	27	38	31	41	-34	-48	35	47	29	41
CT	27	37	32			- 50		44	24	36
HM	24	36	29	39	-30	-45	33	46	33	45
MR	35	44	33	41	-32	-46	46	55	29	41
SUB	36	45	32	41	-33	-47	46	55	31	43
PIPO O	21	34	38	46	-30	-45	34	47	31	43
ELEC Comp	لاببه	., ,			-37	-50	40	51	27	40

Table A-6

Bivariate and Multiple Correlations for Primary Predictor Scores Against School Performance for Three "A" Schools Using the BT/EN/NM (MK + AS) Composite

Rating School Criterion N	T	T 486 ime 085	EN 6487 Time 1258		T	M 492 ime 598	
Predictor	ru	r _c	ru	r _c	r _u	r _c	
- ,				A	SVAB	Tests	
GS	-24	-31	-18	-78	-18	-26	
AR	-31	-37	-22	-32	-23	-31	
vK	-28	-34	-16	-26	-16	-24	
PC	-26	-32	-19	-27	-15	-22	
NO	-22	-25	-16	-19	-15	-18	
CS	-25	-28	-10	-12	-19	-21	
AS	-16	-25	-26	-37	-13	-23	
MK	-31	-38	-13	-26	-22	-30	
MC	-24	-31	-25	-35	-16	-25	
EI	-27	-33	-21	-31	-17	-25	
VE	-30	-36	-20	-30	-18	-26	
R9	42		36		32		
			Na	vy Se	lecto	or Com	posites
G T	-35	-41	-25	-35	-25	-33	
MECH	-28	-35	-30	-40	-19	-28	
ELEC	-36	-42	-26	-37	-27	-35	
CLER	-36	-41	-22	-29	-26	-32	
AM	-30	-37	-27	-37	-20	-29	
BE/E	-35	-41	~21	-33	-26	-34	
BT/EN/MM	-32	-39	-28	- 39	-25	-33	
CT	-39	-44	-26	-35	-29	-36	
	-34	-40	-22	-33	-25	-33	
HM	2.0	-37	-31	-41	-22	-31	
MR	- 30						
	-34	-40	-29	-39	-24	-32	
MR			-29 -23	-39 -35	-24 -25	-32 -33	

 $\frac{\text{Notes}}{\text{r}_{u}}$. Decimal points have been omitted from correlations $\frac{\text{r}_{v}}{\text{r}_{v}}$ = Uncorrected validity; $\frac{\text{r}_{v}}{\text{c}}$ = Corrected validity.

Table A-7

Bivariate and Multiple Correlations for Primary Predictor Scores
Against School Performance for One "A" School Using the
MR (AR + MC + AS) Composite

Rating School Criterion <u>N</u>	F	R 068 SG 94		
Predictor	r	r _c		i The second se
			ASVAB Tests	
 GS	07	26		
AR	29	5.5		
WK	-03	03		
PC	0.5	20		
NO	07	14		
CS	03	11		
AS	31	55		
MK	30	49		
MC	41	63		
EI	27	46		
VE	-01	10		
R9	52			
The second section of the second section section section sections section sect			Navy Selector Composites	The state of the s
GT	21	47		
MECH	39	62		
ELEC	34	57		
CLER	05	16		
AM	30	54		
BE/E	30	53		
BT/EN/MM	43	64		
CT	15	37		
HM	19	41		
MR	48	67		
SUB	35	59		
ELEC Comp	31	54		
AFQT	16	41		

Table A-8

Bivariate and Multiple Correlations for Primary Predictor Scores Against School Performance for Four "A" Schools Using Multiple Composites

Rating School Composites Used Criterion	8563 85 ELEC, EL BT/EN/MM BT FSG FS			GSM RM 8564 600D ELEC, ELEC, BT/EN/MM SUB,V FSG Time 84 302			R, BE)34 E/E UB,VE	
Predictor	r _u	rc	r _u	rc	$r_{\mathbf{u}}$	r _c	r _u	rc	
				A	SVAB	Tests			
GS	25	63	20	53	-03	-35	21	42	
AR	18	60	19	53	-29	-51	23	45	
WK	25	58	12	39	-06	-34	15	36	
PC	20	50	2 7	52	-12	-31	22	42	
NO	06	22	95	11	-31	-34	15	17	
CS	08	38	07	18	-26	-32	14	17	
AS	20	43	14	21	-01	-22	34	45	
MK	40	68	29	59	-32	- 53	21	43	
MC	25	58	26	51	-03	-32	30	49	
EI	29	64	20	50	02	-32	30	40	
VE	26	59	18	46	-09	-3 6	20	41	
R9	53		43		45		55		
		•	Nav	vy Se	lecto	r Com	posite	PS	
GT	27	65	24	<u> </u>	26	-50	27	49	
MECH	33	65	28	53	-04	-35	40	56	
ELEC	46	75	3б	63	-27	-52	37	55	
CLER	16	49	11	29	-35	-49	22	34	
AM	31	65	26	54	-06	- 38	35	54	
BE/E	45	74	33	62	-35	-55	27	49	
BT/EN/MM	47	74	35	62	-22	-48	38	5.5	
CT	19	57	15	42	-39	-57	26	43	
HM	45	74	34	62	-24	- 50	29	50	
MR	31	66	31	59	-12	-42	44	59	
SUB	32	68	30	60	-19	-47	38	56	
ELEC Comp	49	76	38	64	-19	-31	37	5.5	
AFQT	25	63	23	53	-34	- 54	28	49	

Table A-9

Bivariate and Multiple Correlations for Primary Predictor Scores
Against School Performance for One BE/E Schools Using the
Technical (VE+MC+AS) Composite

Rating School Criterion	Т	N 06G IME 58	
Predictor	ru	r _c	
			ASVAB Tests
GS		-26	
AR	- 56	-61	
WK		-36	
PC		-41	
NO	-32	-23	
CS	-41	-43	
AS	-03	-26	
MK		-37	
MC		-29	
ΕI		-18	
VE		-40	
R9	65		
			Navy Selector Composites
GT		-58	
MECH		-58	
ELEC		-49	
CLER	-44	-49	
AM	-23	-40	
BE/E	-47	-51	
BT/EN/MM		-53	
CT		-58	
HM	-34	-44	
MR	-41	- 50	
SUB	-49	- 55	
ELEC Comp	-26	-38	
AFQT	-52	- 59	

Table A-10

Bivariate and Multiple Correlations for Primary Predictor Scores
Against School Performance for 24 BE/E Schools Using the
Electronics (AR + MK + EI + GS) Composite

Rating School Criterion	Т	Q 231 IME 94	T	T 230 IME 245	T	X 232 1ME 49	6 T	TM 308 IME 75	Т	S 269 IME 26	T	S 309 IME 29
Predictor	ru	r _c	ru	r _c	r _u	rc	r	r _c	ru	r _c	r _u	rc
			•	A	SVAB	Tests	,					
GS	-10	-47	-19	-49	-13	-50	-09	-45	-21	-54	-06	-37
AR	-41	-67	-41	-63	-43	-68	-25	-52	-39	-65	-28	-49
WK	-15	-42	-17	-43	-19	-49	-11	-37	-07	-39	02	-28
PC	-11	-37	-18	- 39	-21	-48	-14	-39	-16	-49	-08	- 29
NO	-29	-43	-23	-31	-23	-31	-12	-23	-29	-38	-21	-28
CS	-30	-44	-27	-35	-20	-30	-23	-36	-21	-28	-33	-47
AS	-14	-38	-22	-41	-21	-44	-12	-29	-14	-44	-18	- 36
MK	-46	-69	-47	-67	-45	-70	-15	-47	-30	-60	-18	-4:
MC	-30	-54	-32	-52	-35	-59	-20	-43	-30	-57	-24	-4
EI	-15	-47	-28	26	07	22	18	45	09	21	29	5
VE	-15	-44	-19	-45	-19	-49	-15	-43	-09	-45	-02	-3
R9	5 7		58		59		41		53		48	
			Na	vy Se	lecto	r Com	posit	es				
GT	-37	-65	-37	-61	-38	-66	-25	-53	-31	-62	-22	-40
MECH	-27	-56	-32	-55	-33	-60	-22	-48	-25	-57	-21	-4.
ELFC	-47	-71	-50	-69	÷50	-73	-29	-57	-43	-69	-29	- 5
CLER	-36	-57	-32	-48	-29	-49	-22	-42	-30	-49	-29	-4
AM	- 30	-58	-32	-50	-34	-6 I	-24	-5i	-27	-59	-18	-4
BE/E	-49	-72	-50	-69	- 50	-73	-21	-53	-39	-67	-23	-4
BT/EN/MM	-42	-67	-48	-67	-48	-71	-22	- 5 1	-31	-62	-28	- 5
CT	-43	-66	-40	-59	-39	-62	-26	-50	-38	-61	-33	- 5
HM	-38	-66	-40	-63	-39	-68	-18	- 5 1	-30	-63	-13	-4
MR	-38	- 65	-41	-63	-43	-68	-25	-51	-34	-63	-31	- 5
SUB	-41	-67	-42	-64	-44	-69	-31	-57	-37	-65	-27	- 5
ELEC Comp	-40	-68	-46	-67	-43	-70	-24	-55	-38	-66	-23	-4
AFQT	- 37	-63	-36	-59	-41	-67	-22	- 50	-37	-64	02	- 2

Table A-10 (continued)

Rating School Criterion	6)S 366 INE	6	T 403 INE	6	T 409 IME	, 6	T 414 IME	6	W 254 IME		W 275 INE
<u>N</u>	1	51	9	58	5	11	9	28	6	8	1	66
Predictor	ru	rc	r _u	rc	ru	rc	r _u	rc	r_{u}	rc	ru	rc
				· l	ASVAB	Tests	3					
GS	-14	-43	-11	-50	-11	-47	-16	- 45	-20	-43	-15	-61
AR	-14	-43	-25	- 55	-24	-53	-27	- 51	-32	-50	-41	-72
WK	-07	-36	-07	-37	-05	-38	-13	-39	-04	-17	-06	-45
PC	-04	-17	-09	-35	-03	-30	- 15	-37	-15	-36	-29	-64 //2
NO CS	-23 -16	-35 -26	-13 -20	-16 -27	-26 -23	-34 -34	-20 -18	-27 -25	-30 -27	-33 -37	-33 -39	-43 -56
۸S	-14	-30	-14	-38	-23 -17	-41	-14	-34	-37	-49	-12	-20
MK	-21	-47	-32	-60	-31	-58	-34	- 56	-14	-39	-39	-73
MC	-30	-49	-18	- 45	-18	-43	-24	- 45	-28	-46	-23	-54
EI	-25	-49	-17	-50	-21	- 51	-18	-43	-16	-37	-25	-63
VE	-04	-33	-11	-41	-04	- 39	-17	-41	-02	-27	-15	- 55
R9	44		43		46		44		59		60	
			Na	vy Se	lecto	r Com	posit	es			, , , , , , , , , , , , , , , , , , , 	,
GT	-11	-42	-22	-55	-18	- 51	-27	-52	-21	- 43	-37	-72
MECH	-22	-45	-21	-51	-20	-49	-25	-49	-32	-49	-24	-59
ELEC	-29	- 53	-36	-64	-35	-61	-36	-58	-30	-50	-47	-77
CLER	-22	-40	-21	-36	-28	-47	-25	-41	-31	-44	-44	- 66
AM	-23	-47	-20	- 51	-16	-48	-26	-49	-22	-44	-25	-63
BE/E	-24	-50	-34	-63	-33	-60	-36	-58	-24	-46	-44	- 75
BT/EN/MM	-24	-48	-33	-61	-32	- 59	-33	` - 56	-34	- 51	-39	-72
CT	-22	- 45	-25	-48	-31	- 54	-30	- 50	-36	- 51	- 50	-74
HM MB	-19 -27	-48 -50	-27	-59	-24 -27	-56	-31	-55 -53	-17 -44	-43	-34	-72
MR SUB	-27 -24	-50 -49	-26 -27	-56 -58	-27 -23	-55 -54	-29 -31	-53	-44 -30	-57 -49	-36	-68 -72
ELEC Comp	-24	-53	-27 -32	-62	-23 -32	-54 -60	-31 -34	-55 -57	-30 -25	-49 -47	-38 -40	-72 -74
AFQT	-16	-33 -44	-21	-51	-32 -24	-53	-27	-51	-25 -26	-47 -45	-43	-74 -73
MI QI	- 10	-44	- 4 1	-51	-24	-23	-21	-21	-20	-43	-43	-/3

Table A-10 (continued)

Rating School Criterion	T	W 306 ime 50	ó T	TG 248 ime 15	6 T	TG 310 ime 21	6: T	TG 359 ime 20	6: T	TM 249 IME 84	6 T	TM 311 ime
Predictor	r _u	r _c	r _u	r _c	r _u	r _c	r_{u}	rc	r _u	r _c	r_{u}	r _c
				ار	SVAB	Tests						
GS	-08	-46	-07	-39	-10	-43	-16	-51	-02	-43	-04	-54
1.4.	-37	-62	-34	-57	- 34	-58	-33	-61	-24	-55	-30	-70
WK	-08	-40	-04	-31	-17	-39	-05	-38	-14	-46	-11	-49
PC	-20	-46	-13	-3 3	-06	-29	-09	-37	-10	-37	-31	-58
NO	-23	-33	-29	-37	-24	-32	-30	-44	-15	-20	-23	-35
CS	-25	-37	-23	-35	-34	-44	-19	-20	-24	-36	-28	-43
AS	-23	-47	-21	-36	-07	-21	-14	-36	-20	-38	-05	-32
MK	-43	-67	-41	-62	-29	-56	-33	-63	-42	-65	-45	-76
MC	-22	-49	-23	-42	-19	-43	-15	-43	-28	-49	-14	-47
EI	-11	-45	-19	-44	-13	-41	-06	-44	-27	-54	-11	-47
VE	-12	-45	-08	-35	-14	-38	-07	-42	-13	-45	-19	-56
R9	53		53		48		49		57		54	
		_	Na	vy Se	lecto	r Com	posit	es				
GT	-32	-61	-28	-54	-32	-57	-27	- 59	-24	-56	-32	-71
MECH	-27	-56	-25	-48	-17	-42	-17	-50	-28	-54	-17	- 56
ELEC	-481	-67	-41	-62	-36	-60	- 38	-66	-39	-65	-44	-77
CLER	-29	-48	-31	-48	-35	-50	-29	-46	-26	-45	-32	-55
AM	-22	-53	-21	-46	-22	-49	-15	-49	-27	-54	-22	-60
BE/E	-45	-68	-41	-62	- 34	-59	- 39	-66	-39	-64	-45	-77
BT/EN/MM	-45	- 68	-45	-64	-27	-54	-35	-64	-45	-67	-42	-75
CT	-36	-59	-37	-57	-40	-59	-34	-57	-30	-55	-37	-67
HM	-33	-63	- 29	- 56	-27	-56	-31	-63	-29	-60	- 38	- 74
MR	-37	-63	-36	-57	-26	-52	-29	-59	-35	-60	-22	-64
SUB	-34	-63	-32	-56	-33	-58	. 27	-60	-32	-00	-31	-70
6160 0	-34	-63	-35	-59	-28	-57	- 3ı	-63	-37	-64		-75
ELEC Comp	- 34	-05	- 33	۰.۰	0	-) /	- 11	-0.3	-) /	- 04	- 39	/ 7

Table Λ -10 (continued)

Rating School Criterion <u>N</u>	6 T	TM 358 IME 66	6 T	MG 370 IME 69	6 T	MM 368 IME 64	GMT 6369 TIME 224		STG 6276 TIME 149		TD 6233 TIME 430	
Predictor	ru	rc	\mathbf{r}_{u}	r _c	r _u	r _c	ru	rc	r_u	rc	ru	rc
				1	ASVAB	Tests	5					
GS	-11	-48	-14	-38	-06	-39	-19	-34	-01	-27	-14	-48
AR	-17	-49	-32	-51	-31	-58	-35	-47	-13	-36	-40	-65
WK	01	-35	-20	-39	02	-29	-19	-32	06	-20	-07	-37
PC	-07	-33	-19	- 36	-12	-35	-26	-37	-06	-25	-05	-29
NO	-30	-36	-16	-23	-24	-38	-29	-32	-22	-25	-20	-30
CS	- 15	-19	- 15	-22	-27	-31	-22	-23	- 25	-26	-17	-24
AS	-10	-35	-09	-24	-14	-24	-15	-25	-25	-38	- 15	-37
MK	-43	-66	-44	-59	- 35	-61	-44	-53	-22	-42	-48	-69
MC	-06	-37	-32	-47	-13	-39	-27	-38	-27	-43	-33	-55
EI	-18	-49	-12	-35	-12	-41	-20	-35	-08	-33	-16	-47
VE	-03	-38	-21	-40	-03	-34	-24	-37	02	-23	-07	-38
R9	53,		51		49		51		50		58	
			Na	vy Se	lecto	r Com	posit	es				
GT	-14	-51	-34	-53	-25	-56	-37	-49	-09	-35	-31	-60
MECH	-09	-44	-27	-46	-15	-42	-29	-41	-26	-43	-26	-53
ELEC	-38	-64	-40	-57	-38	-63	-41	-52	-20	-42	-48	-70
CLER	-25	-41	-24	-38	-30	-48	-35	-42	-27	-37	-22	-40
AM	-06	-43	-33	- 51	-11	-43	-31	-43	-20	-40	-29	-56
BE/E	-40	-65	-44	-60	-38	-63	-44	-54	-21	-42	-50	-71
BT/EN/MM	-39	-64	-39	- 56	-35	-60	-39	- 50	-36	-50	-44	-67
CT	-28	- 51	-30	-47	-36	-58	-42	- 51	-28	-43	-32	-56
HM	-30	-61	-37	-56	-24	-56	-37	-49	-14	-39	-36	-64
MR	-15	-49	-33	-51	-29	-56	- 35	-47	-31	-47	-38	-63
SUB	-13	-50	-40	-57	-24	-55	-38	-50	-22	-42	-40	-65
ELEC Comp	-37	-64	-36	-55	-31	-60	-37	-49	-18	-41	-42	-67
Dino Comb												

Table A-11 (continued)

Rating School	6	MT 551	
Criterion	T		
<u>N</u>	1	01	
Pro ictor	r _u	r _c	
			ASVAB Tests
GS	-05	-40	
AR	-40		
WK	-06		
PC	-09	-33	
NO	-40	- 53	
CS	-37	-50	
AS	-15		
MK	-45		
MC	-25		
ΕI	-15		
VE	-09	-41	
R9	63		
			Navy Selector Composites
GT	-30	-59	
MECH		-47	
ELEC	-39		
CLER	-42		
AM	-11	-49	
BE/E	-48	-71	
BT/EN/MM	-39		
CT		-69	
IIM	- 25		
MR		-57	
SUB	-33	-60	
ELEC Comp			
AFQT	7	-64	

 $\frac{\text{Notes.}}{\text{r}_u} = \text{Uncorrected validity; r}_c = \text{Corrected validity.}$

Table A-11

Bivariate and Multiple Correlations for Primary Predictor Scores
Against School Performance for 13 BE/E School Using the
BE/E (AR+2MK+GS) Composite

Rating School Criterion	T	E 235 IME 606	6 T	SE 237 IME 20		259 IME	6 T	E 270 IME 48	Т	E 307 IME 91	Т	M 258 IME 90
Predictor	ru	rc	r _u	rc	r _u	rc	ru	rc	ru	rc	ru	^r c
					ASVAB	Tests	1					-
GS	-15	-34	-20	-44	-24	-45	03	-17	-15	-37	-17	-39
AR	-34	-51	-38	- 55	-38	-56	-23	-38	-32	-51	-31	-50
WK	-19	-36	-24	-36	-18	-36	03	-13	-26	-41 .	-16	-37
PC	-18	-33	-26	-37	-23	-33	-10	-23	-25	-39	-14	-33
NO	-21	-28	-25	-34	-30	-37	-18	-28	-10	-20	-29	-39
CS	-22	-26	-32	- 35	-36	-44	-11	-19	-19	-26	-29	-36
AS	-27	-36	-20	-28	-13	-21	06	-04	-24	-33	-19	-35
MK	-36	- 53	-43	-59	-39	- 58	-28	-43	-29	-51	-39	-55
MC	-29	-43	-40	- 50	-18	-35	-07	-22	-27	-41	-25	-42
ΕI	-27	-39	-33	-42	-25	-39	01	-15	-34	-47	-21	-38
VE	-20	-38	-17	-27	-23	-39	01	-15	-28	-43	-16	-37
R9 	51		61		55		35		49		47	
			Na	vy Se	lecto	r Com	posit	es				
GT	-33	-51	-36	-53	-41	-59	-14	-32	-37	-55	-28	-48
MECH	-32	-47	-33	-44	-22	-39	-01	-17	-33	-47	-24	-43
ELEC	-41	-56	-51	-64	-44	-61	-18	-37	-41	- 58	-35	-53
CLER	-30	-42	-35	-44	-43	- 55	-15	-29	-27	-41	-35	- 50
AM	-30	-46	-36	-48	-25	-43	-04	-21	-32	-48	-24	-43
BE/E	-40	-56	-49	-63	-45	-62	-26	-42	-36	-55	-39	-55
BT/EN/MM	-42	-57	-43	- 57	-33	-53	-15	-34	-38	- 55	-35	-52
CT	-37	-52	-44	-56	-48	-62	-20	- 35	-34	-51	-38	-54
HM	-32	-51	-43	-58	-37	-57	-12	-32	-33	-52	-30	-49
MR	-38	-53	-40	-54	-29	-47	-1C	-27	-36	-52	-30	-48
SUE	-37	- 53	-44	-58	-38	-56	-13	-31	-39	- 55	-30	-49
ELEC Comp	-36	-53	-49	-62	-38	~57	-12	-33	-37	- 55	-33	- 51
AFQT	-35	-51	-33	-49	-43	-59	-17	-34	-36	-53	-32	-50

 $\frac{\mathrm{Notes}}{\mathrm{r_u}}$ = Uncorrected validity; $\mathrm{r_c}$ = Corrected validity.

Table A-11

Rating School Criterion		M 273 TME		M 303 IME		C 274 IME		C 315 IME		C 367 IME	6	NT 318 IME
<u>N</u>	2	69	1	64	6	oc -	 (66		89	2	56
Predictor	r	rc	ru	rc	ru	r _c	r	r _c	r _u	r _c	r _u	r _c
				A	SVAB	Tests						
GS	-28	-42	04	-17	-22	-41	-06	-33	02	-30	02	-23
AR	-51	-62	-33	-48	-36	-53	-31	-56	-14	-31	-43	-62
WK	-28	-42	-08	-25	-23	-41	-28	-42	-06	-22	-10	-30
PC	-21	-31	-05	-23	-24	-38	-32	-45	-14	-25	-23	-38
NO	-26	-33	-25	-30	-17	-25	06	09	-28	-33	-21	-19
CS	-31	-38	-30	- 39	-18	-24	01	07	-28	-34	-26	-28
AS	-19	-35	-16	-20	-23	-35	-27	-42	-29	-38	-10	-25
MK	-55	-67	-24	-44	-34	-53	-52	-69	-31	-42	-30	-56
MC	-40	-50	-17	-30	-27	-42	-26	-44	-09	24	-11	-30
EI	-37	-47	-20	-28	-38	-42	-31	-49	-20	-30	-13	-29
VE	-27	-41	-07	-27	-26	-42	-27	-42	-08	-23	-15	-35
R9	65		51		47		60		54		54	
			Na	vy Se	lecto	r Com	posit	es				
GT	-45	-58	-25	-44	-37	-54	-37	-59	-14	-31	-36	-57
MECH	-35	-46	-19	-32	-31	-47	-34	-51	-22	-35	-16	-37
ELEC	-60	-70	-29	-46	-43	-59	-44	-65	- 22	-37	-33	-58
CLER	-40	-51	-33	-45	-29	-42	-08	-11	-34	-43	-32	-41
AM	-39	- 51	-16	-33	-31	-48	-31	-49	-10	-27	-17	-39
BE/E	-61	-70	-27	-46	-42	-59	~48	-67	-24	-38	- 38	-61
BT/EN/MM	-50	-62	-29	-45	-38	- 55	-50	-67	-40	-49	-27	-53
CT	-48	-59	-39	-52	-37	-52	- 19	-36	-32	-43	-44	-59
HM	-49	-62	-12	-36	-36	-55	-41	-63	-15	-32	-21	-50
MR	-46	-57	-28	-42	-35	-52	-36	- 57	-23	-37	-25	-47
SUB	-45	-55	-26	-43	-38	-55	-37	-58	-14	-31	-31	-54
ELEC Comp	- 55	-67	-20	-41	-38	- 56	-41	-63	-21	-36	-21	-50
AFQT	-41	-54	-29	-46	-38	-55	-34	-55	-23	-37	-38	58

 $\frac{\text{Notes}}{r_u} = \frac{\text{Decimal points have been omitted from correlations}}{r_c} = \frac{\text{Corrected validity; } r_c}{r_c} = \frac{\text{Corrected validity.}}{r_c}$

Table A-12

Bivariate and Multiple Correlations for Primary Predictor Scores
Against School Performance for 15 BE/E Schools Using the
Multiple Composites

Rating School Composites Used Criterion N	6 G E T	M 05R T,MECI LEC IME 92	6 H G E T	M 05U T,MECH LEC IME 109	6 I G E T	M 05V T,MECH LEC IME 72	6 G E T	T 256 T,MECH LEC IME 37	6 G E T	T 271 T,MECH LEC IME 12	6 G E T	T 304 T,MECH LEC IME 64
Predictor	r_u	r _c	r _u	rc	ru	r _c	r _u	rc	r _u	rc	r _u	rc
		**************************************		A:	SVAB	Tests			-			
GS	-11	-25	-15	-37	-17	-49	-21	-48	- 19	-46	-13	-43
ΛR	-12	-29	-20	-44	-30	- 59	-24	-53	-14	-49	-25	- 55
WK	-04	-25	-04	-36	~06	-48	-05	-44	-11	-48	-09	-49
PC	-01	-22	-12	-39	-09	-47	-07	-42	-09	-47	-06	-44
NO	-16	-23	-15	-24	-14	-21	-20	-33	-16	-31	-11	-14
CS	-13	-22	-18	-29	-18	-32	-17	-35	-18	-35	-24	-30
AS	-24	-31	-27	-39	-17	-33	-26	-43	-32	-46	-22	-37
MK	-15	-28	-26	-42	-29	-53	-23		-21	-46	-20	-47
MC	-22	-32	-28	-43	-27	-48	-23		-24	-45	-18	-40
EI	-28	-36	-28	-43	-31	-48	-25	-45	-31	-51	-20	-41
V.E	-04	-26	-07	-38	-08	- 50	-08		-13	-49	-09	-49
R9	39		45		48		43		44		43	
	***************************************		Na	vy Sel	lecto	r Comp	osit	es				-
GT	-11	-29	-18	-43	-26	-58	-21	- 52	-18	-51	-22	-54
MECH	-25	-36	-31	-49	-26	-53	-29		-33	-56	-24	-51
ELEC	-27	-37	-34	-50	-40	-63	-34		-34	-57	-30	-57
CLER	-17	-30	-20	-41	-19	-45	-22		-23	-49	-23	-45
AM	-19	-33	-26	-46	-26	-56	-22	- 51	-26	- 53	- 19	-51
BE/E	-18	-32	-30	-48	-36	-61	-30	- 55	-27	-54	-27	-55
BT/EN/MM	-28	-37	-37	-51	-29	- 51	-32	-54	-35	-54	-29	- 51
CT	-18	-32	-23	-44	-25	-54	-25	-52	-24	-52	-27	-54
HM	-14	-30	-23	-45	-27	-57	-24	-52	-25	~ 53	-20	- 53
MR	-28	-38	-35	-51	-31	-57	-33	-56	-34	- 56	-29	-55
SUB	-21	-33	-29	-47	-33	-60	-28	- 54	-28	-54	-25	- 55
ELEC Comp	-26	-37	-32	-49	-36	-60	-31	-55	-33	-55	-26	-53
AFQT	-17	-31	-20	-43	-23	-57	-24	- 53	-22	-52	-22	-54

Table A-12 (continued)

Rating School Composites Used Criterion	6 E S	TG 404 LEC, UB,VE	6 E S	TG 413 LEC, UB,VE	6 E B	M 372 LEC,C T/EN/ IME		RM 606J CLER, SUB,V TIME	ó C E S	M 06K LER UB,VE IME	RM 63 CL SU TI	52 ER B,VE
N	5	7	1	59	5	7		156	ز	8	16	2
Predictor	r u	r _c	r _u	r _c	ru	rc	ru	r _c	r	rc	r _u	r _c
				A	SVAB	Tests	 ;					
GS	-10	-23	08	-22	-09	-47	-07	-25	05	01	-12	-33
ΛR	-24	-46	-11	-33	-47	-70	-31	-53	-12	-14	-35	-59
WK	00	-23	02	-22	-18	-45	-09	-36	02	-03	-10	-41
PC	-08	-27	00	-22	- 24	-42	-25	-44	-05	-08	-07	-35
NO	-39	-49	-22	-31	-18	-26	-26	-21	0.5	06	-19	-15
CS	-31	-39	-13	-24	-42	-55	-21	-21	01	01	-20	-27
AS	-13	-22	-12	-30	-12	-40	-14	-30	04	-01	-05	-28
MK	-25	-47	-24	-41	-42	-66	-35	-50	-06	-07	-3 6	-53
MC	-42	-54	-10	-27	-19	-45	-29		02	-03	-30	-57
EI	-19	-39	-04	-28	-34	-59	-21	-35	-04	-07	-30	-51
VE	-12	-33	00	-24	-25		-17	-42	-04	-08	-11	-43
R9	63		35		67		53		20		53	
			Na	vy Se	lecto	r Com	ipos i	tes				
GT	-24	-46	-07	-32	-45	- 6 9	-31	-54	-11	-12	-31	-5E
MECH	-32	-47	-11	-32	-22	-52	-28		02	-04	-22	-53
ELEC	-25	-47	-17	-38	-50	-72	-42		-09	-11	-46	-65
CLER	-43	-56	-18	-34	-41	-59	-33		02	00	-2b	-40
AM	-38	-53	-06	-29	-27	-56	-31	-54	00	-05	-29	-57
BE/E	-23	-46	-21	-44	-46	-70	-39		-08	-10	-41	-62
BT/FN/MM	-27	-47	-26	-42	-39	-65	-34		00	-04	-30	-53
CT	-44	-58	-19	-37	-49	-69	-38		-03	-06	-35	-56
ЧМ	-13	-41	-11	-35	-38	-66	-31	-51	-03	-07	-32	-56
MR	-42	-56	-15	-36	-35	-63	- 34	-56	-01	-0p	-31	-57
SUB	-41	-55	-10	-34	-44	-68	-37		-05	-09	-37	-61
ELEC Comp	-19	-44	-15	-37	-44	-69	-36	-54	-04	-07	-42	-62
AFQT	-30	-49	-12	-34	-43	-67	-36	-56	-03	-07	-35	- 59

 $\frac{\text{Notes.}}{r_u} = \frac{\text{Desimal points have been omitted from correlations}}{r_u} = \frac{\text{Uncorrected validity;}}{r_u} = \frac{\text{Corrected validity;}}{r_u} = \frac{\text{Correct$

Table A-12 (continued)

Rating School Composites Used Criterion	6 E S T	TS 06M LEC, UB,VE IME 6	STS 606N ELEC, SUB,VE TIME 322		6 E S T	TS 277 LEC, UB,VE IME 12	
Predictor	ru	rc	r _u	r _c	r _u	r _c	
				A	SVAB	Tests	
GS	-14	-13	-13	-54	-23	-57	
AR	-27	-49	-34	-65	-20	-57	
WK .	-04	-36	-13	-46	05	-30	
PC	03	-16	-19	-43	-17	-47	
NO	-20	-23	-18	-15	-15	-27	
C\$	-14	-13	-33	-37	-17	-19	
AS	00	-20	-25	-50	-15	~38	
MK	-21	-47	-30	-64	-30	-63	
MC	-17	-40	-16	-46	-17	-44	
ΕI	-20	-44	-30	-06	-27	-56	
VE	-02	-34	-15	-47	-08	-43	
	46		56		48		
	<u> </u>		Na	ivy Se	lecto	or Comp	oosites
GT	-20	-47	-32	-65	-18	-57	
MECH	-09	-38	-27	-58	-20	-52	
ELEC	-29	-52	-43	-71	-41	-69	
CLER	-19	-31	-32	-44	-21	-41	
AM	-14	-42	-20	-54	-17	-51	
BE/E	-24	-50	-36	-68	-35	-66	
BT/EN/MM	-15	-43	-39	-68	-33	-64	
CT	-24	-43	-39	-61	-25	-53	
HM	-13	-45	-29	-65	-31	-64	
MR	-20	-46	-35	-66	-24	-57	
	-23	-49	-32	-6 5	-23	-59	
SUB		7/		0.5			
SUB ELEC Comp	-22	-49	-38	-69	-42	-69	

 $\frac{Not}{r_u} \underbrace{=}_{=} \text{Uncorrected validity; } r_c = \text{Corrected validity.}$

APPENDIX B

CORRELATIONS BETWEEN CURRENT ASVAB SELECTOR COMPOSITES AND MOST VALID ALTERNATE COMPOSITES

Table B-1

Correlations Between Operational Selector Composites and Most Valid Alternate Composites for "A" Schools With FSG Criterion

Rating	Cauma a	Co	lectompos relat	ite	A14 a m a a a	C1	
Code	Course Co d e	N N			Alternate Composite	Correl	
	Code		r _u	r _c	Composite	r _u	r _c
				VE+A	R		
ABE	6513	72	41	56	MC+MK+AS	56	66
					MK+AS	54	€4
					MK+EI+GS+AS	53	64
					MK+EI+AS	53	63
					VE+MK+MC+GS	52	63
					MK+MC+EI	52	63
					AR+MC+AS	52	62
					VE+AR+AS	51	63
					AR+MK+MC	51	63
					MC+GS+2AS	51	61
ABF	6512	96	38	5 0	MK+EI+GS+AS	49	58
					AR+EI+GS	48	57
					MC+GS+2AS	47	56
					AR+MK+EI+GS	47	5 6
					AR+VE+AS	46	56
					AR+MC+AS	46	56
					AR+VE+AS	46	56
					MK+EI+AS	45	54
					MK+EI+GS	45	55
					VE+MC+AS	44	54
ABH	6527	69	42	54	NO+EI+MC+AS	o1 ^{††}	68
					MK+EI+AS	61#	68
					VE+MC+AS	60*	67
					MK+EI+GS+AS	÷00	67
					MC+GS+2AS	59	66
					NO+VE+MC+AS	59#	66
					AR+EI+MC	5 8 *	66
					AR+EI+GS	57 *	65
					AR+MC+AS	57☆	65
					AR+VL+AS	57**	ъS

Table B-1 (Continued)

Rating	Course	Co	lecto mposi elati	ite	Alternate	Corre	lation
Code	Code	N	ru	rc	Composite	r _u	r _c
		(/E+AR	(Con	tinued)		
CTR	6301	140	50	59	VE+MK CS+VE+AR	53 52	60 60
					CS+AR+MC+MK VE+MK+GS VE+AR+NO+CS	50 49 49	58 57 57
CTT	6302	259	60	68	AR+2MK+GS None More Valid	49	57
			_ •		AR+MK	59	67

Notes. Decimal points have been omitted from correlations. $r_u = \text{Uncorrected validity}$; $r_c = \text{Corrected validity}$. Validities marked with asterisks are significantly greater than operational composite validities: *p<.05, **p<.01

Table B-1 (Continued)

Rating	Course	Correlation					
Code	Code	N	elati r _u	r _c	Composite	$\mathbf{r}_{\mathbf{u}}$	r _c
		,	/E+AR	(Con	tinued)		
					AR+2MK+GS	59	67
					CS+AR+MC+MK	59	67
CTT	6320	63	44	53	CS+AR+MC+AS	56	63
					CS+AR+MC+MK	56	63
					MK+AS	52	59
					AR+MK	50	58
					CS+VE+AR	50	58
					MC+MK+AS	50	58
					AR+NK+MG	50	58
					AR+MC+AS	49	57
					VE+AS+NO+CS	49	57
					AR+2MK+GS	48	56
DP _	6167	373	23	39	VE+MK	28	42
. •					CS+AR+MC+MK	26	41
					VE+MK+GS	25	40
					AR+2MK+GS	25	40
					MK+EI	25	39
					AR+MK	24	40
					AR+MK+EI+GS	24	39
					AR+MK+MC	24	39
					CS+VE+AR	24	39
					NO+CS+VE+AS	24	39
MS	6125	1581	47	57	AR+MK+EI+GS	48	57
					AR+2MK+GS	46	56
					VE+AR+MC	46	56
					AR+EI+GS	46	56
					WK+AR	46	56
					VE+MK+MC+GS	46	56
QM	6001	473	47	54	CS+AR+MC+MK	57**	62

Notes. Decimal points have been omitted from correlations. r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: *p<.05, ***p<.01

Table B-1 (Continued)

Rating	Course	Co	lectompos:	ite	Alternate	Correlation		
Code	Code	N	ru	r _c	Composite	r _u	r _C	
		1	VE+AR	(Con	tinued)			
					AR+MK+MC	55**	61	
					AR+MK	54***	59	
					AR+MK+AS	53***	59	
					AR+2MK+GS	52*	58	
					CS+AR+MC+AS	52	58	
					AR+MC	51	57	
					MC+MK+AS	50	56	
					VE+AR+MC	50	56	
					CS+VE+AR	50	56	
SH	6477	595	19	32	VE+4K	28**	38	
					MK+EI	25	35	
					VE+MK+GS	23	35	
					AR+2MK+GS	22	34	
					MK+EI+GS	22	33	
					AR+MK+EI+GS	22	33	
					AR+MK	20	32	
					VE+MK+MC+GS	20	32	
					MK+AS	20	31	
					MK+EI+AS	20	31	
SM	6005	377	32	50	VE+AR+NO+CS	43:55	56	
					CS+VE+AR	40**	5.5	
					CS+AR+MC+MK	40₩	55	
					NO+CS+VE+AS	38	51	
					VE+NO+CS	38	51	
					WK+NO+CS	37	50	
					AR+MK	35	51	
					AR+2MK+GS	34	51	
					AR+MK+MC	34	51	
					CS+AR+MC+AS	34	51	

Notes. Decimal points have been omitted from correlations, r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: *p<.05, **p<.01

Table B-1 (Continued)

Rating	Course	Se Co Corr	Correlation				
Code	Code	N	ru	^r c	Composite	$\mathbf{r}_{\mathbf{u}}$	rc
			,	/E+MC-	+AS		
BU	6286	203	43	67	AR+MC+AS	49	70
					MC+MK+AS	49	70 [.]
					CS+AR+MC+AS	47	69
					AR+MC	47	68
					AR+MK+MC	47	67
					VE+AR+MC	45	68
					AR+EI+MC	45	67
					CS+AR+MC+MK	45	66
					AR+MK+AS	44	66
					MK+MC+EI	43	66
CM	6291	79	23	37	CS+AR+MC+AS	36	45
					AR+MC+AS	34*	43
					AR+MC	30	41
					AR+EI+MC	29	40
					AR+MK+AS	28	40
					MC+GS+2AS	28	40
					MC+MK+AS	27	39
					CS+AR+MC+MK	27	39
					AR+VE+AS	26	38
					AR+MK+MC	25	37
EO	6292	181	22	36	AR+MK+AS	34	44
					AR+MK+MC	33	43
					AR+2MK+GS	33	42
					AR+MK	32	41
					MK+AS	31	41
					MC+MK+AS	31	41
					AR+MK+EI+GS	29	40
					CS+AR+MC+MK	29	39
					AR+VE+AS	28	40
					VE+MK+MC+GS	28	40

Table B-1 (Conti.ued)

Rating	Course	Co	lecto mposi elati	ite	A'terna te	Corre	lation
Code	Code	N	r _u	r _c	Composite	ru	^r c
		VE	+MC+/	AS (Co	ontinued)		
GMT	6025	99	48	71	VE+AR+MC	53	73
					VE+MK+MC+GS	52	73
					NO+VE+MC+AS	51	73
					VE+MC	50	72
					AR+VE+AS	50	72
					VE+MK+GS	50	71
					AR+MK+EI+GS	50	71
					AR+EI+GS	50	71
					WK+AR	50	70

Notes. Decimal points have been omitted from correlations, r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: #p<.05, #mp<.01

Table B-1 (Continued)

Selector Composite Rating Course Correlation Alternate Correl										
Rating	Course		elati	ion	Alternate	Corre:	lation			
Code	Code	N	r _u	rc	Composite	r _u	rc			
		VE	+MC+A	AS (Co	ontinued)					
					CS+VE+AR	50	67			
łT	6106	53	13	25	CS+AR+MC+AS	23	31			
					MC+GS÷2AS	22	30			
					AR+MC+AS	20	29			
					AR+MC	17	27			
					AR+EI+MC	16	27			
					MC+MK+AS	14	2 6			
					CS+AR+MC+MK	14	25			
					AR+EI+GS	14	25			
					WK+MC+AS	13	25			
					MK+EI+GS+AS	12	24			
T	6119	390	34	5 9	AR+MK+EI+GS	42*	63			
					MK+ET+G5+AS	42%	63			
					MK+E1+GS	42*	62			
					VE+MK+MC+GS	40	62			
					VE+MK+GS	40	61			
					MK+EI	40	61			
					AR+EI+GS	40	61			
					MK+EI+AS	40	61			
					AR+2MK+GS	39	59			
					MK+MC+EI	38	61			
IT	6120	297	30	54	AR+VE+AS	26	56			
					VE+AR+MC	35	56			
					CS+AR+MC+AS	35	56			
					AR+MK+AS	35	5n			
					NO+VE+MC+AS	34	56			
					AR+MK+EI+GS	34	55			
					CS+AR+MC+MK	34	53			
					AR+MC+AS	33	55			
					AR+MK+MC	33	54			
					VE+AR	33	53			
SW'	6288	85	20	31	C. +AR+MC+AS	23	32			
					VE+MC	20	30			
					TC+NK+AS	19	30			
					CS+AR+MC+MK	19	29			

Table B-1 (Continued)

Rating	Course	Co	lectompos: elat:	ite	Alternate	Correl	ation
Code	Code	N	r _u	rc	Composite	r_{u}	rc
		VE	+MC+A	AS (Co	ontinued)		
UT	6290	77	15	23	AR+2MK+GS	45**	48
					AR÷MK+AS	43***	45
					AR+MK	42*	45
					MK+EI	41*	44
					MK+AS	41**	43
					AR+MK £1+GS	40∻	43
					MK+EI+AS	39**	41
					VE+MK	38*	41
					AR+MK+MC	36∻	39
					MK+EI+GS	35	39

 $\frac{\mathrm{Notes}}{\mathrm{r_u}}$. Decimal points have been omitted from correlations, $\frac{\mathrm{r_u}}{\mathrm{r_u}}$ = Uncorrected validity; $\mathrm{r_c}$ =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: $\mathrm{**p}$ <.01

Table B-1 (Continued)

Rating	Course	Corre	lation				
Code	Code	N	elati r _u	rc	Alternate Composite	$\mathbf{r}_{\mathbf{u}}$	r
bsk							
			AR	+MK+E	I+GS		
DS	6131	118	32	57	CS+AR+MC+MK	45*	63
					AR+MK+MC	44*	62
					AR+2MK+GS	42**	61
					AR+MK+AS	41	61
					VE+MK	38	59
					MK+EI	36	58
					MK+AS	35	5 7
					CS+VE+AR	34	57
					MK+MC+E1	34	57
					VE+AR+NO+CS	31	54
FTG	6376	117	45	72	AR+MK+MC	54	75
					MC+MK+AS	52	74
					MK+MC+EI	51	74
					AR+2MK+GS	50	74
					VE+MK+MC+GS	48	73
					MK+AS	48	72
					AR+MK+AS	47	72
					AR+MK	46	72
					CS+AR+MC+MK	46	71
FTG	6377	245	32	57	MC+MK+AS	37	5 9
					VE+MK+MC+GS	36	58
					AR+MK+MC	36	58
					NO+VE+MC+AS	36	57
					CS+AR+MC+MK	35	58
					AR+MK+AS	35	58
					VE+AR+MC	35	58
					MK+AS	34	57
					CS+AR+MC+AS	34	56
					AR+MC+AS	33	56

Notes. Decimal points have been omitted from correlations. r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with usterisks are significantly greater than operational composite validities: *pr.05, **p<.01

Table B-1 (Continued)

Rating	Course	Co	lecto mposi elati	ite	Alternate	Corre	lation
Code	Code	N	r	r _c	Composite	r _u	rc
		AR+	IK+E I	+GS (Continued)		
FTM	6027	172	52	80	VE+MK	53	79
					MK+EI	52	79
					AR+MK+AS	51	79
FTM	6108	134	42	68	AR+MK+AS	47	70
					VE+MK	46	70
					MK+AS	46	69
					AR+2MK+GS	45	69
					AR+MK+MC	44	69
					AR+MK	44	68
					CS+AR+MC+MK	44	68
					VE+MK+GS	42	68
					VE+MK+MC+GS	42	68
					MC+MK+AS	42	67
SWS	6146	187	41	67	MK+MC+EI	42	67
					AR+MK+MC	40	66
			,	VE+NO-	+cs		
СТА	6020	107	23	37	CS+VE+AR	31	42
					VE+AR+MC	28	38
					VE+AR+NO+CS	27	39
					AR+MK+MC+CS	27	39
					VE+MC	27	36
					CS+AR+MC+AS	26	38
					WK+AR	26	37
					VE+AR	26	37
					AR+MC	26	35
					VE+MK+MC+GS	23	33

Notes. Decimal points have been omitted from correlations. r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: *p<.05, **p<.01

Table B-1 (Continued)

Rating	Course	Со	lecto mpcsi elati	ite	Alternate	Correlatio		
Code	Code	N	r	r _c	Composite	r	r _c	
			Α	R+2MK	+GS	•		
	6239	126	24	37	NO+VE+MC+AS	37	45	
					AR+MC	3ь	45	
					VE+AR+NC	36	45	
					AR+MC+AS	35	44	
					CS+AR+MC+AS	35	44	
					VE+MC	34	43	
					AR+MK+MC	34	43	
					MC+MK+AS	34	43	
					WK+MC+AS	34	42	
					VE+MC+AS	33	41	
M	6070	369	35	44	AR+MK+EI+GS	40*	48	
					AR+EI+MC	39	47	
					AR+EI+GS	39	47	
					MK+MC+EI	39	47	
					MK+EI+GS	38	46	
					CS+AR+MC+MK	38	46	
					MK+EI	38	46	
					AR+MK+MC	36	45	
					AR+MK+AS	36	44	
					MK+EI+AS	36	44	
r <u>M</u>	o0 3 6	219	35	47	VE+AR+MC	46***	55	
					AR+MC+AS	46 [%]	55	
					AR+MC	46	55	
					CS+AR+MC+AS	44	54	
					AR+EI+MC	4.4	54	
					AR+MK+MC	43**	53	
					AR+VE+AS	42	52	
					MC+MK+AS	41	5.1	
					VE+MC+AS+NO	41	51	

Table B-1 (Continued)

n	G	Co	lecto mposi	ite	A1 .	(2)	
Rating Code	Course Code	N	elati r _u	r c	Alternate Composite	Corre r _u	r _c
		AR-	+2MK+	GS (C	ont inued)		
	· • • • · · · · · · · · · · · · · · · ·						
TMT	6093	202	25	39	NO+VE+AS	38	47
				-	NO+VE+MC+AS	38*	47
					VE+MK+MC+GS	35₩	46
					AR+VE+AS	34	45
					MK+EI+GS+AS	34	45
					VE+MC+AS	34	44
					MC+GS+2AS	34	43
					WK+MC+AS	33	43
					NO+CS+VE+AS	33	43
					NO+EI+MC+AS	33	43
				AR+MC	+AS		
	6068	194	48	67	MC+MK+AS	50	68

Notes. Decimal points have been omitted from correlations, r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: *p<.05, **p<.01

Table B-1 (Continued)

Rating	Course	Co	lector mposite elation	Alternate	Corre	lation
Code	Code	N		Composite	$\mathbf{r}_{\mathbf{u}}$	r _c
		A	R+MK+EI+GS,	MK+AS		
GSE/GSM	8563	117	AR+MK+EI+GS	MK+EI	52	77
•			46 75	MK+EI+GS	49	76
			MK+AS	MK+EI+AS	49	76
			47 74	MK+MC+EI	47	75
				MK+EI+GS+AS	46	75
				VE+MK	46	74
				MC+MK+AS	46	74
				AR+2MK+GS	45	74
				VE+MK+GS	45	74
GSM	8564	84	AR+MK+EI+GS	MK+MC+EI	40	65
			36 63	MC+MK+AS	40	65
			MK+AS	MK+EI+GS	38	64
			35 62	MK+EI+GS+AS	37	64
	•			MK+EI+AS	37	63
				AR+MK+MC	36	63
				MK+EI	36	63
				VE+MK+MC+GS	35	63
				VE+MK+AS	34	62
				AR+MK+AS	34	62
	an antimographic and the control tagence	AR+2	2MK+GS, VE+AF	R+MC, VE		· • • • • • • • • • • • • • • • • • • •
TMS	6034	82	AR+2MK+GS	NO+EI+MC+AS	49	61
11117	00.74		27 49	NO+VE+MC+AS	48	62
			VE+AR+MC	CS+AR+MC+AS	47	61
			38 56	AR+MC+AS	44	59
			VE SO	MK+EI+GS+AS	42	58
			$\frac{\sqrt{2}}{20}$ 41	AR+EI+MC	42	58
			_0 -1	MK+EI+AS	42	57
				AR+VE+AS	41	57 57
				MC+MK+AS	40	5 <i>7</i>
				VE+MC+AS	40	56

Notes. Decimal points have been omitted from correlations, $r_{\rm u}$ = Uncorrected validity; $r_{\rm c}$ =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: $*p_{\rm c}.05$, $**p_{\rm c}.01$

Table B-2

Correlations Between Current ASVAB Selector Composites and Most Valid Alternate Composites for "A" Schools with a TIME Criterion

Rating	Course	Co	lecto mposi elati	te	Alternate	Correla	nt ion
Code	Code	N N		rc	Composite	r u	r c
	** n.m. n. 111 - make a desti in cum		۸R	-MK+E1	(+GS		
.D	6501	880	-35	-50	AR+MK+AS	-38	-51
	0301	(700	3.7	30	CS+AR+MC+AS	-37	-50
					MK+AS	- 36	-50
					CS+AR+MC+MK	-36	-50
					AR+MK+MC	- 35	-49
					MC+MK+AS	-35	-49
					MK+EI+AS	-34	-49
					MK+EI+GS+AS	-34	-49
					VE+AR+AS	-34	-48
	*				AR+MC+AS	-34	-48
Q.	6240	475	-26	-43	VE+AS+NO+CS	-37**	-49
•					CS+AR+MC+AS	-35**	-49
					VE+AR+NO+CS	-35*	-48
					NO+VE+MC+AS	-35*	-48
					CS+VE+AR	-34*	-48
					VE+NO+CS	-34	-46
					WK+NO+CS	-34	-46
					CS+AR+MC+MK	-33*	-47
					NO+EI+MC+AS	-31	-46
					VE+AR+MC	-30*	-46
ıΤ	6239	1489	-24	-38	CS+AR+MC+MK	-31**	-42
					CS+AR+MC+AS	- 30**	-42
					VE+AR+NO+CS	-30*	-41
					NO+CS+VE+AS	-30*	-40
					CS+VE+AR	-28	-40
					NO+EI+MC+AS	-27	-39
					NO+VE+MC+AS	-27	-39
					WK+NO+CS	-27	-36
					AR+MK+MC	-26	-39
					AR+MK+AS	-26	-39

Table B-2 (Continued)

Rating	Course	Co	lecto mposi elati	te	Alternate	Correl	ation
Code	Code	N	r _u	r _c	Composite	r _u	r _c
			AR-	+MK+E	I+GS		
AX	6241	288	-28	-45	VE+AR+NO+CS CS+VE+AR	-38 -38*	-51 -51
					NO+CS+VE+AS	-36 -36	-49
					CS+AR+MC+AS	-35	-49
					VE+NO+CS	-35	-46
					WK+NO+CS	-34	-45
					AR+MK+AS	-30	-47

Notes. Decimal points have been omitted from correlations, $r_u = \text{Uncorrected validity}$; $r_c = \text{Corrected validity}$. Validities marked with asterisks are significantly greater than operational composite validities: $\#p^c.05$, $\#p^c.01$

Table B-2 (Continued)

Rating	Course						
Code	Code	N	r _u	rc	Composite	r _u	^r c
		AR+	1K+EI+	-GS (C	Continued)		
					AR+MK+MC	-30	-47
					VE+AR	-29	-46
					AR+MK	-29	-46
W	602A	400	-20	-39	CS+VE+AR	-31*	-45
					VE+AR	-29∺	-44
					WK+AR	-29*	-44
					VE+AR+NO+CS	-29	-43
					AR+VE+AS	~28	-43
					NO+CS+VE+AS	-28	-42
					VE+NO+CS	-26	-39
					WK+NO+CS	-2 6	-39
					NO+VE+AS	-25	-40
					CS+AR+MC+AS	-24	-40
EW .	602D	408	-21	-41	CS+VE+AR	-29	-44
					VE+AR+NO+CS	-28	~43
					AR+VE+AS	-27	-43
					VE+AR	-26	-43
					WK+AR	-26	-43
					NO+CS+VE+AS	-26	-41
					CS+AR+MC+AS	-25	-42
					AR+MK+AS	-24	-42
					WK+NO+CS	-24	-38
					VE+NO+CS	-23	-37
rd	6242	303	-23	-37	CS+AR+MC+MK	-31*	-42
					CS+AR+MC+AS	-30	-42
					AR+EI+MC	-28	-40
					MK+MC+EI	-28	-40
					NO+EI+MC+AS	-27	- 39
					VE+AR+NO+CS	-26	- 38
					NO+CS+VE+AS	-26	- 38
					AR+MC	-26	- 39
					MK+EI	-25	- 39
					AR+MK+MC	- 25	- 39

Notes. Decimal points have been omitted from correlations, $r_u = \text{Uncorrected validity}$; $r_c = \text{Corrected validity}$. Validities marked with asterisks are significantly greater than operational composite validities: #p < .05, #p < .01

Table B-2 (Continued)

Rating	Course	Co	lecto mposi elati	te	Alternate	Correla	****
Code	Code	N	ru	r _c	Composite	ru	r _c
			Al	R+2MK+	+GS	-	
ıc	605Z	658	-32	-47	NO+CS+VE+AS	-40*	-50
	• • • • • • • • • • • • • • • • • • • •	430	•	• •	NO+VE+AS	-39*	-50
					VE+AR+NU+CS	-38	-50
					CS+AR+MC+AS	-38	-50
					NO+VE+MC+AS	-38	-50
					CS+AR+MC+MK	-37*	-50
					AR+MK+AS	-37*	-50
					CS+VT+AR	-36	-48
					NO+EI+MC+AS	-36	-48
					AR+VE+AS	-35	-48
	,			MK+AS	3		
вт	6486	2085	-32	-39	VE+AR+NO+CS	-39**	-44
					CS+AR+MC+MK	- 38* *	-44
					CS+VE+AR	-38**	-43
					NO+CS+VE+AS	-37**	-43
					AR+MK+EI+GS	-36**	-42
					VE+MK	-36**	-42
					MK+EI	-36**	-42
					VE+NO+CS	- 36	-41
					WK+NO+CS	-36	-41
EN	6487	1258	-28	-39	NO+VE+MC+AS	-34**	-43
					NO+EI+MC+AS	- 33***	-42
					NO+VE+AS	-33*	-42
					CS+AR+MC+AS	-33***	-42
					AR+MC+AS	-31	-41
					NO+CS+VE+AS	-31	-41
					VE+MC+AS	-30	-40
					AR+VE+AS	-30	-40
					MC+MK+AS	-30	-40
					VE+AR+MC	-29	- 39
					AR+2MK+GS	-26	-34
					AR+MK+MC	-26	-34
					VE+NO+CS	-26	-32

Table B-2 (Continued)

Rating	Course	Co	lecto mposi elati	te	Alternate	Correlation		
Code	Code	N	r _u	rc	Composite	r _u	r _c	
			IK+AS	(Cont	tinued)			
M	6492	2598	-25	-33	VE+AR+NO+CS	-29*	-36	
					CS+VE+AR	-29%	-36	
					CS+AR+MC+MK	-29**	-36	
					AR+MK+EI+GS	-27	-35	
					CS+AR+MC+AS	-27	-35	
					AR+MK+AS	-27***	-35	
					NO+CS+VE+AS	-27	-34	

Notes. Decimal points have been omitted from correlations, r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: $\pi p < .05$, $\pi \pi p < .01$

Table B-2 (Continued)

Rating	Course	Co	lector mposite elation	Alternate	Correl	lation
Code	Code	N		Composite	r _u	r _c
	AR	+MK+ET+0	S VE+NO+CS	VE+AR+MC, VE		
						
RM	606D	302	AR+MK+EI+GS		-38	-57
RM					-38 -36	
RM			AK+MK+EI+GS	AR+MK		-56
RM			AK+MK+E I+GS -27 -52	AR+MK CS+AR+MC+MK	-36	-56
			AK+MK+E1+GS -27 -52 VE+NO+CS	AR+MK CS+AR+MC+MK AR+2MK+GS	-36 -35	-56 -55
RM			AR+MK+EI+GS -27 -52 VE+NO+CS -35 -49 VE+AR+MC	AR+MK CS+AR+MC+MK AR+2MK+GS CS+VE+AR	-36 -35 -34	-56 -55 -54
RM		302	AK+MK+EI+GS -27 -52 VE+NO+CS -35 -49 VE+AR+MC	AR+MK CS+AR+MC+MK AR+2MK+GS CS+VE+AR WK+NO+CS	-36 -35 -34 -34	-56 -55 -54 -48
RM .		302	AK+MK+EI+GS -27 -52 VE+NO+CS -35 -49 VE+AR+MC -19 -47	AR+MK CS+AR+MC+MK AR+2MK+GS CS+VE+AR WK+NO+CS VE+MK	-36 -35 -34 -34 -30	-56 -55 -54 -48 -53
RM		302	AK+MK+EI+GS -27 -52 VE+NO+CS -35 -49 VE+AR+MC	AR+MK CS+AR+MC+MK AR+2MK+GS CS+VE+AR WK+NO+CS VE+MK AR+MK+MC	-36 -35 -34 -34 -30	-56 -55 -54 -48 -53 -53

 $\label{eq:Notes} \begin{array}{ll} \underline{\mathrm{Notes}}. & \mathrm{Decimal\ points\ have\ been\ omitted\ from\ correlations}; \\ r_u = \mathrm{Uncorrected\ validity}; & r_c = \mathrm{Corrected\ validity}. & \mathrm{Validities} \\ \mathrm{marked\ with\ asterisks\ are\ significantly\ greater\ than\ operational\ composite\ validities: *p<.05, ***p<.01} \end{array}$

Table B-3

Correlations Between Current ASVAB Selector Composites and Most Valid Alternate Composites for BE/E Schools with a TIME Criterion

Rating	Course	Co	lecto mposi elati	te	Alternate	Correla	ation
Code	Code	N	ru	r _c	Composite	r	rc
				VE+AI	3		
MN	606G	58	-20	-38	CS+AR+MC+MK AR+MK+AS AR+MK+MC AR+MK CS+VE+AR CS+AR+MC+AS VE+AR+NO+CS AR+MC VE+AR AR+VE+AS	-58** -56** -55* -53* -53* -51** -50* -49**	-62 -62 -56 -60 -59 -58 -57
		· · · · · · · · · · · · · · · · · · ·	AR-	-MK+E	I+GS		
ΛQ	6231	794	-47	-71	CS+AR+MC+MK AR+MK+MC AR+MK AR+2MK+GS AR+MK+AS MK+MC+EI MK+EI	-53** -52** -50 -49 -48 -46	
АТ	6230	2245	-50	-69	CS+AR+MC+MK AR+MK+MC AR+MK+AS MK+EI MK+MC+EI AR+MK AR+2MK+GS	-54** -52* -51 -51 -51 -50	

Table B-3 (Continued)

Rating	Course	Co	lecto mposi elati	te	Alternate	Correl	ation
Code	Code	N	ru	rc	Composite	r _u	r _c
		AR+1	1K+E I -	+G\$ ((Continued)		~ <u></u>
AX	6232	449	-50	-73	AR+MK-MC	- 55*	-75
					CS+AR+MC+MK	-54	-75
					AR+MK+AS	- 53	-74
					AR+MK	-52	-74
					MK+MC+EI	- 52	-74
					AR+2MK+GS	-50	-73
					MK+E.I	-50	-73
					NC+MK AS	-49	-72

Notes. Decimal points have been omitted from correlations, r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: *p<.05, **p<.01

Table B-3 (Continued)

D - 4 '	0	Correlation					
Rating Code	Course Code	N	elatio r _u	r _c	Alternate Composite	ru	r _C
		AR+M	K+E I +	·GS (C	ontinued)		<u>-</u>
CMT	6308	275	-29	-57	CS+AR+MC+MK	-37	-60
					CS+AR+MC+AS	-35	-58
					AR+MK+MC	-31	-57
					VE+AR+MC	-31	-57
					AR+EI+MC	-30	-56
					AR+MK+AS	-29	-57
					AR+MC	-29	-55
					CS+VE+AR	-29	-50
					MK+MC+EI	~28	-56
					NO+CS+VE+AS	-28	-50
s	6269	226	-43	-69	CS+AR+MC+MK	-45	-69
					AR+MK+MC	-42	-68
os	6309	129	-29	- 51	CS+AR+MC+AS	-40	-57
_					CS+AR+MC+MK	-39	-5 6
					AR+EI+MC	-34	-54
					AR+MK+AS	-34	-53
					NO+CS+VE+AS	-33	-51
					CS+VE+AR	-33	÷52
					VE+AR+NO+CS	-33	-52
					AR+MC	-33	-53
					AR+MK+MC	-32	-52
					NO+EI+MC+AS	-31	-51
DS	6366	151	-29	-57	NO+EI+MC+AS	-37	-56
		_	·		MK+MC+EI	-35	-55
					AR+EI+MC	-33	-54
					NO+VE+MC+AS	-31	-52
					CS+AR+MC+MK	-31	-53
					MK+EI	- 30	-53
					AR+MK+MC	-30	-53
					MC+MK+AS	- 30	-52
					MK+EI+GS	-29	-53
					MK+EI+GU+AS	-29	-53
ET	6403	958	-36	-64	CS+AR+MC+MK	-37	-63
-				- 1	AR+MK+AS	-37	-64

Notes. Decimal points have been omitted from correlations, $r_{\rm u} = {\rm Uncorrected\ validity};\ r_{\rm c} = {\rm Corrected\ validity}.\ {\rm Validities}$ marked with asterisks are significantly greater than operational composile validities: ${\rm wp}/.05,\ {\rm weps}.01$

Table B-3 (Continued)

Rating Code	Course Code		mposi elati r _u		Alternate Composite	Correl r _u	ation r
				С		u 	<u></u>
	_	AR+N	1K+E I+	GS (C	Continued)		
					AR+MK+MC	-36	-63
					MK+E1	-35	-63
ET	6409	511	-35	-61	CS+AR+MC+MK	-38	-62
					MK+EI	-36	-61
					MK+MC+EI	-35	-61
					AR+MK+MC	-35	-61
					AR+MK+AS	- 34	-61
					NO+SI+MC+AS	-34	-59
					CS+AR+MC+AS	- 34	-59
				,	MK+EI+AS	-34	-60
T	6414	928	-36	-58	CS+AR+MC+MK	- 39	-59
					AR+MK+MC	-38	-59
					MK+MC+EI	-37	-59
					MK+EI	- 37	-58
					AR+2MK+GS	-36	-58
					AR+MK+AS	-36	-57
					AR+MK	-35	-57
•• •	. 0.57		9.6	5.0	MC+MK+AS	-35	-57
:W	6254	68	-30	-50	CS+AR+MC+AS	-48*	
					AR+MC+AS	-44 -43	
					NO+EI+MC+AS	-43 -43	-57 -57
					NO+VE+MC+AS	-43 -40	-37 -33
					NO+CS+VE+AS NO+VE+AS	-40 -40	-54
					AR+MK+AS	-39	-54 -54
					MC+GS+2AS	- 39 - 39	-54
					AR+MC	-37	-53
					CS+AR+MC+MK	-37 -37	-53
EW	6275	166	_ 1, ¬	-77	CS+AR+MC+MK	-52	-78
ып	02/3	100	/	- , ,	VE+AR+NO+CS	-50	74
					CS+AR+MC+AS	-30 -49	-75
					CS+VE+AR	-47	-74
					AR+MK+AS	-47	-76
					NO+CS+VE+AS	-47	-70

Notes. Decimal points have been omitted from correlations, r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: $\psi_p < .05$, $\psi_p < .01$

Table B-3 (Continued)

Rating	Course	Corre	lecto mposi elati	te	Alternate	Correlation		
Code	Code	N	ru	r _c	Composite	$\mathbf{r}_{\mathbf{u}}$	r _c	
		AR+M	K+EI+	GS (C	Continued)			
					AR+MK	-44	-76	
EW	6306	550	-41	-67	AR+MK+AS	-6 3505	-70	
					CS+AR+MC+MK	-48*	-70	
					AR+hK	-47*	-69	
					AR+MK+MC	-47*		
					MK+AS	-45	-68	
					AR+2MK+GS	- 45*	-68	
					CS+AR+MC+AS	-42	-65	
					MC+MK+AS	-42	-66	
FTG	6248	415	-41	-62	CS+AR+MC+MK	-46	-65	
					AR+MK+AS	-46		
					MK+AS	-45	-64	
					AR+MK+MC	-45	-64	
					MK+EI	-43	-63	
					MK+EI+AS	-43	-63	
					AR+MK	-43	-63	
					MK+MC+EI	-43		
					MC+MK+AS	-43	-63	
					AR+2MK+GS	-41	-62	
FTG	6310	221	- 36	-60	CS+AR+MC+MC	-45*		
					CS+VE+AR	-42	-62	
					VE+AR+NO+CS	-40	-59	
					CS+AR+MC+AS	-38	-59	
					AR+MK+MC	- 38	-61	
					WK+NO+CS	-36	-50	
					AR+MK	-36	-60	
					NO+CS+VE+AS	-35	-53	
					AR+MK+AS	-35	-60	
					VE+NO+CS	-35	-60	
FTG	6359	220	-38	-66	CS+AR+MC+MK	-41	-66	
					AR+MK+AS	-40	-66	
					AR+2MK+GS	-39	-66	
					AR+MK	-38	-65	

 $\label{eq:normal_points} \begin{array}{ll} \underline{\text{Notes}}. & \text{Decimal points have been omitted from correlations,} \\ \hline r_u = \text{Uncorrected validity; } r_c = \text{Corrected validity.} & \text{Validities} \\ \hline \text{marked with asterisks are significantly greater than operational composite validities: } & p<.05, & p<.01 \\ \hline \end{array}$

Table B-3 (Continued)

		Co	Selector Composite Rating Course Correlation Alternate Correlation								
_	Course				Alternate						
Code	Code	N	r _u	rc	Composite	$r_{\mathbf{u}}$	rc				
		AR+h	1K+E I +	GS (C	Continued)						
					AR+NK+MC	-38	-55				
TM	6249	284	-39	-65	MK+MC+E1	-49***	-69				
					MK+EI	-48***	-69				
					CS+AR+MC+MK	-46	-67				
					AR+MK+MC	-46*	-68				
					MC+MK+AS	-46	-67				
					MK+EI+AS	-45	-67				
					AR+MK+AS	-45	-67				
					MK+AS	-45	-67				
					AR+MK	-41	-65				
					CS+AR+MC+AS	- 39	-62				
TM	6311	140	-44	-77	CS+AR+MC+MK	-46	-76				
					VE+MK	-45	-77				
					AR+2MK+GS	-45	-77				
					MK+£I	-45	-77				
					AR+MK	-45	-77				
					AR+MK+AS	-43	-76				
					AR+MK+MC	-43	-76				
TM	6358	165	-38	-64	MK+EI	-44	-67				
					AR+2MK+GS	-40	-65				
					AR+MK	-39	-65				
					MK+AS	-39	-64				
					MK+E1+AS	-38	~64				
					MK+EI+GS	-37	-64				
					AR+MK+AS	-37	-64				
MG	6370	369	-40	-57	AR+MK+MC	-49**	-62				
					CS+AR+MC+MK	-45	-60				
					AR+2MK+GS	-44	-60				
					MK+MC+EI	-44	-p0				
					AR+MK	-44	-59				
					MC+MK+AS	-42	-58				
					VE+MK+MC+GS	-42	-58				
					AR+MK+AS	-42	-58				
					MK+EI	-41	-58				

Notes. Decimal points have been omitted from correlations, r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: %p < .05, %%p < .01

Table B-3 (Continued)

Rating	Course	Co	lecto mposi elati	te	Alternate	Correla	t ion
Code	Code	N	r _u	r _c	Composite	r _u	r _c
		AR+N	1K+E I+	+GS (C	ontinued)		
					AR+MC	-40	-57
GMM	6368	264	-34	-63	CS+AR+MC+MK	-42	-64
					AR+MK+AS	-41	-65
					AR+MK	-38	-63
					AR+2MK+GS	-38	-63
					CS+AR+MC+AS	-38	-60
					AR+MK+MC	-37	-62
GMT	6369	224	-41	-52	CS+AR+MC+MK	-47	-5 6
					AR+2MK+GS	-44	-54
					AR+MK+MC	-44	-54
					AR+MK	-144	-54
					AR+MK+AS	-42	-53
					VE+AR+NO+CS	-42	-51
					VE+MK	-41	-52
					MK+EI	-41	-52
					MK+MC+EI	-41	-52
					CS+AR+MC+AS	-41	-51
STG	6276	149	-20	-42	CS+AR+MC+AS	-38*	-51
					MC+MK+AS	- 38***	-51
					CS+AR+MC+MK	-38**	-51
					MK+AS	-36*	-50
					NO+VE+MC+AS	-36*	-50
					NO+CS+VE+AS	-36	-48
					NO+EI+MC+AS	-35	-50
					AR+MK+AS	-33	-58
					NO+VE+AS	-31	-46
					MK+EI+AS	-31	-47
TD	6233	430	-48	-70	AR+MK+MC	-54 #	-73
					CS+AR+HC+MK	-53	-72
					AR+MK	-51	-71
					AR+2MK+GS	-50	-71
					AR+MK+AS	-49	-70
					MK+MC+EI	-48	-70
					MK+EI	-47	-70

Notes. Decimal points have been omitted from correlations. $\begin{matrix} r_u &= \text{Uncorrected validity; } r_c &= \text{Corrected validity.} & \text{Validities} \\ \\ \text{marked with asterisks are significantly greater than operational composite validities: } &p<.05, &p<.01 \end{matrix}$

Table B-3 (Continued)

Rating	Course	Correlation					
Code	Code	N N	elati r _u	r _c	Alternate Composite	r _u	r _c
		AR+	-2MK+0	SS (Co	ntinued)		
AE	6235	1606	-40	-56	CS+AR+MC+MK	-47**	-60
					AR+MK+AS	-45**	-59
					AR+MK+MC	-44**	-58
					CS+AR+MC+AS	-43	-56
					MK+MC+EI	-42	-56
					MK+AS	-42	-57
					MC+MK+AS	-42	-56
					MK+EI+AS	-41	-55
					MK+EI	-41	-56
					AR+MK	-41	-57
\SE	6237	120	-49	-63	CS+AR+MC+MK	-58*	-68
					AR+MK+MC	-52	-64
					MK+MC+EI	-51	-63
					AR+MK+EI+GS	-51	-64
					CS+AR+MC+AS	-50	-60
					MK+EI	-50	-63
					MK+EI+GS	-49	-62
					VE+NK+MC+GS	-48	-62
CE	6259	65	-45	-62	CS+AR+MC+MK	-49	-64
	0237	•		-	CS+VE+AR	-49	-63
					VE+AR+NO+CS	-48	-62
					AR+MK+EI+GS	-44	-61
					AR+MK	-44	-61
SE SE	6270	148	-26	-42	AR+MK	-31	-45
<i>,</i>	02/0	140		7 44	AR+MK+MC	-26	-42
					CS+AR+MC+MK	-25	-42
CE	6307	291	-36	-55	MK+EI	-43	-58
V-1	0307	4,1	30	,,,	AR+HK+AS	-42	-58
					CS+AR+MC+MK	-42	-58
					MK+MC+EI	-42	-57
					AR+MK+EI+GS	-41	-58
					MK+EI+AS	-41	-57
					AR+MK+MC	-41	-57
					AR+EI+MC	-40	-56

Table B-3 (Continued)

Rating	Course	Co	lecto: mposi: elatio	te	Alternate	Correlatio	
Code	Code	N	r	r _C	Composite	$\mathbf{r}_{\mathbf{u}}$	r _c
		AR+	-2M K +G	SS (Co	ntinued)		
					CS+AR+MC+AS	-39	-54
					VE+AR+MC	-39	-55
EM	6258	490	-39	-55	CS+AR+MC+MK	-43*	-58
					AR+MK	-40	-55
					AR+MK+MC	- 39	-55
					VE+AR+NO+CS	-38	-54
EM	6273	269	-61	~70	AR+MK+MC	-62	-71
					CS+AR+MC+MK	-62	-71
					AR+MK	-60	- 70
EM	6303	164	-27	-46		-41%	
					VE+AR+NO+CS	- 31)	-52
					CS+AR+MC+AS	-38	- 50
					NO+CS+VE+AS	-37	-
					CS+VE+AR	-36	-50
					AR+MK+AS	-36	-51
					AR+MK	-34	-50
					AR+MK+MC	-34	-50
					WK+NO+CS	-33	-45
					VE+NO+CS	-33	-45
IC	6274	600	-42	-59		-44	-59
					AR+MK+E1+GS	-43	-59
					AR+MK+AS	-42	-58
					AR+MK	-42	-58
IC	6315	66	-48	-67	VE+MK	-52	-69
					HK+AS	-50	-67
					MK+EI	-50	-68
					AR+MK+AS	-50	-68
					AR+MK	-49	-68
					AR+MK+MC	-48	-67
					MK+MC+EI	-47	-66
					MC+MK+AS	-47	-65
					MK+EI+AS	-47	-65
IC	6367	89	-24	-38	NO+CS+VE+AS	-41	-49
					MK+AS	-40	-49

Notes. Decimal points have been omitted from correlations, r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: $\pm p < .05$, $\pm \pm p < .01$

Table B-3 (Continued)

Rating	Course	Co	lecto mposi elati	te	Alternate	Correlation		
Code	Code	N	ru	r _c	Composite	r _u	r _c	
		AR	+2MK+0	SS (Co	ontinued)			
			<u> </u>		MK+EI+AS	-38	-47	
					NO+VE+AS	-37	-46	
					NO+EI+MC+AS	-35	-45	
					AR+MK+AS	-34	-44	
					VE+NO+CS	-34	-43	
					MK+EI	-34	-44	
					WK+NO+CS	-33	-42	
					NO+VE+MC+AS	-32	-43	
ГМТ	6318	256	-38	-61	CS+AR+MC+MK	-47 *	-65	
					AR+MK	-46**	-64	
					VE+AR+NO+CS	-44	-59	
					CS+VE+AR	-43	-60	
					AR+MK+MC	- 39	-61	
					AR+MK+AS	-39	-60	
TMT	6551	101	-48	-71	CS+AR+MC+MK	~56	-75	
-					AR+MK	-54	-74	
					AR+MK+MC	-54	-74	
					AR+MK+AS	-47	-71	

Notes. Decimal points have been omitted from correlations, r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: $\pm p < .05$, $\pm p < .01$

Table B-3 (Continued)

Rating	Course	Correlation					
Code	Code	N	elati ^r u	r _c	Alternate Composite	ru	$^{\mathrm{r}}\mathrm{_{c}}$
		VE+AR,	AR+N	IK+EI+GS	, VE+MC+AS		-
EM	605R	592	VE+A	ıR	NO+EI+MC+AS	-36**	-44
				-29	MK+MC+EI	-31	-40
				K+EI+GS	AR+EI+MC	-31	-40
			-27	-37	NO+VE+MC+AS	-31	-4()
			VE+N	IC+AS	MK+EI+GS+AS	-30	-40
			-25	-36	CS+AR+MC+AS	-30	-39
					MK+EI	-29	-39
					MC+MK+AS	-29	-39
					AR+MC+AS	-28	-38
					AR+MK+AS	-28	-38
M	605U	1109	VE+A	<u>.R</u>	CS+AR+MC+AS	-39*	-53
			-18	-43	AR+MK+AS	-39	-53
	. •		AR+M	K+EI+GS	NO+EI+MC+AS	-38	-52
			-34	- 50	MC+MK+AS	-38	-52
			VE+M	C+AS	MK+MC+EI	-38	-52
			-31	-49	MK+EI+AS	-38	-52
					MK+AS	-37	-51
					CS+AR+MC+MK	-37	-52
					AR+EI+MC	-36	-51
					AR+MK+MC	-35	- 51
M	605V	272	VE+A	<u>.R</u>	MK+MC+EI	-40	-61
				-58	CS+AR+MC+MK	-40	-63
				C+EI+GS		-40	-60
			-40	-63	AR+EI+MC	-39	-62
			$\frac{VE+M}{-26}$	<u>-53</u>	AR+MK+MC	-39	- 63
T	6256	637	VE+A		NO+EI+MC+AS	-38	-57
				-52	CS+AR+MC+AS	-37	-58
					AR+MK+AS	-36	- 58
				-57	NO+VE+MC+AS	-36	-57
				IC+AS	MK+EI+GS+AS	-34	-56
				-53	MC+MK+AS	-34	- 55
					AR+MC+AS	- 53	-56
					MK+ET+AS	-33	-54
					CS+AR+MC+MK	-35	- 56
					NO+VE+AS	-33	-56

Table B-3 (Continued)

Datina	Course	Co	lector mposite elation	Alternate	Corre	1 a + i
Rating Code	Code	N N	r _u r _c	Composite	ru	r _c
	VE+AR	R, AR+MK	+EI+GS, VF	+MC+AS (Continued	i)	
ET	6271	412	VE+AR	NO+EI+HC+AS	-41	-59
			-18 -51	MK+EI+AS	-39	-57
			AR+MK+EI+	GS MK+EI+GS+AS	-38	-58
			-34 -57	NO+VE+MC+AS	-38	-59
			VE+MC+AS	CS+AR+MC+AS	-36	-57
			-33 -56	NO+VE+AS	-36	-58
				AR+MK+AS	-36	-58
				MK+AS	- 35	-54
				MK+MC+EI	-35	-56
				NC+MK+AS	-35	
ET	6304	364	VE+AR	CS+AR+MC+AS	- 38	- 59
			-22 -54	CS+AR+HC+MK	- 36	-59
			AR+MK+EI-	HGS AR+MK+AS	-34	
			-30 -57	NO+CS+VE+AS	-32	-53
			VE+MC+AS		-31	-57
			-24 -51	NO+EI+MC+AS	-30	-51
				MK+EI+AS	-30	-52
				MK+AS	+29	-51
				ARMCAS	-29	-55
				AR+NK+MC	-29	-36

Notes. Decimal points have been omitted from correlations. r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: $\pm p < .05$, $\pm 4p < .01$

Table B-3 (Continued)

Rating	Course	Alternate	Correlation			
Code	Code	N	elation r _u r _c	Composite	r _u	^r c
		A	R+MK+EI+GS	, MK+AS		
GSE	6372	57	AR+MK+EI+	GS CS+AR+MC+NK	-56	-75
			-50 -72	MC+EI	-55	-74
			MK+AS	CS+VE+AR	-52	-73
			-39 -65	AR+MK	-52	-73
				AR+MK+MC	-50	-72
				AR+MK+AS	-49	-71
				VE+AR+NO+CS	-49	-69
STS	606M	66		MC AR+EI+MC	-32	-54
			-2 9 -52	しろすれれずけしずけれ	-32	~53
			-29 -52 VE+AR+MC	CS+AR+MC+MK MK+EI	-32 -31	-53
			VE+AR+MC -23 -49		_	
			VE+AR+MC	MK+EI	-31	-53
			VE+AR+MC -23 -49 VE -02 -34	MK+EI AR+MK+MC AR+MC MK+MC+EI	-31 -30	-53 -53 -51 -52
STS	606N	322	VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+	MK+EI AR+MK+MC AR+MC HK+MC+EI GS CS+AR+MC+MK	-31 -30 -29 -29 -46	-53 -53 -51 -52 -71
STS	606N	322	VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+ -43 -71	MK+EI AR+MK+MC AR+MC MK+MC+EI GS CS+AR+MC+MK CS+AR+MC+AS	-31 -30 -29 -29 -46 -45	-53 -53 -51 -52 -71 -69
STS	606N	322	VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+ -43 -71 VE+AR+MC	MK+EI AR+MK+MC AR+MC MK+MC+EI GS CS+AR+MC+MK CS+AR+MC+AS AR+MK+AS	-31 -30 -29 -29 -46 -45	-53 -53 -51 -52 -71 -69 -71
STS	606N	322	VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+ -43 -71 VE+AR+MC -32 -65	MK+EI AR+MK+MC AR+MC MK+MC+EI GS CS+AR+MC+MK CS+AR+MC+AS AR+MK+AS MK+EI	-31 -30 -29 -29 -46 -45 -44	-53 -53 -51 -52 -71 -69 -71
STS	606N	322	VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+ -43 -71 VE+AR+MC -32 -65 VE	MK+EI AR+MK+MC AR+MC HK+MC+EI GS CS+AR+MC+MK CS+AR+MC+AS AR+MK+AS MK+EI MK+EI+AS	-31 -30 -29 -29 -46 -45 -44 -43 -43	-53 -53 -51 -52 -71 -69 -71 -71
			VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+ -43 -71 VE+AR+MC -32 -65 VE -15 -47	MK+EI AR+MK+MC AR+MC AR+MC HK+MC+EI GS CS+AR+MC+MK CS+AR+MC+AS AR+MK+AS MK+EI MK+EI+AS CS+VE+AR	-31 -30 -29 -29 -46 -45 -44 -43 -43	-53 -53 -51 -52 -71 -69 -71 -71 -70
STS	606N 6277	322 112	VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+ -43 -71 VE+AR+MC -32 -65 VE -15 -47 AR+MK+EI+	MK+EI AR+MK+MC AR+MC HK+MC+EI GS CS+AR+MC+MK CS+AR+MC+AS AR+MK+AS MK+EI MK+EI+AS CS+VE+AR HK+EI	-31 -30 -29 -29 -46 -45 -44 -43 -43 -42	-53 -53 -51 -52 -71 -69 -71 -70 -67
			VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+ -43 -71 VE+AR+MC -32 -65 VE -15 -47 AR+MK+EI+ -41 -69	MK+EI AR+MK+MC AR+MC MK+MC+EI GS CS+AR+MC+MK CS+AR+MC+AS AR+MK+AS MK+EI MK+EI+AS CS+VE+AR MK+EI MK+EI+GS	-31 -30 -29 -29 -46 -45 -44 -43 -43 -42 -42	-53 -53 -51 -52 -71 -69 -71 -70 -67 -69
			VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+ -43 -71 VE+AR+MC -32 -65 VE -15 -47 AR+MK+EI+ -41 -69 VE+AR+MC	MK+EI AR+MK+MC AR+MC HK+MC+EI GS CS+AR+MC+MK CS+AR+MC+AS AR+MK+AS MK+EI MK+EI+AS CS+VE+AR HK+EI	-31 -30 -29 -29 -46 -45 -44 -43 -43 -42	-53 -53 -51 -52 -71 -69 -71 -70 -67
			VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+ -43 -71 VE+AR+MC -32 -65 VE -15 -47 AR+MK+EI+ -41 -69 VE+AR+MC -23 -59	MK+EI AR+MK+MC AR+MC MK+MC+EI GS CS+AR+MC+MK CS+AR+MC+AS AR+MK+AS MK+EI MK+EI+AS CS+VE+AR MK+EI MK+EI+GS	-31 -30 -29 -29 -46 -45 -44 -43 -43 -42 -42	-53 -53 -51 -52 -71 -69 -71 -70 -67 -69
			VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+ -43 -71 VE+AR+MC -32 -65 VE -15 -47 AR+MK+EI+ -41 -69 VE+AR+MC	MK+EI AR+MK+MC AR+MC MK+MC+EI GS CS+AR+MC+MK CS+AR+MC+AS AR+MK+AS MK+EI MK+EI+AS CS+VE+AR MK+EI MK+EI+GS	-31 -30 -29 -29 -46 -45 -44 -43 -43 -42 -42	-53 -53 -51 -52 -71 -69 -71 -70 -67 -69
			VE+AR+MC -23 -49 VE -02 -34 AR+MK+EI+ -43 -71 VE+AR+MC -32 -65 VE -15 -47 AR+MK+EI+ -41 -69 VE+AR+MC -23 -59 VE -08 -43	MK+EI AR+MK+MC AR+MC MK+MC+EI GS CS+AR+MC+MK CS+AR+MC+AS AR+MK+AS MK+EI MK+EI+AS CS+VE+AR MK+EI MK+EI+GS	-31 -30 -29 -29 -46 -45 -44 -43 -43 -42 -42	-53 -53 -51 -52 -71 -69 -71 -70 -67 -69

Notes. Decimal points have been omitted from correlations. r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: #p < .05, #p < .01

Table B-3 (Continued)

D. a. t. a.	0	Co	lector mposite	A15	C 1	
Rating Code	Course Code	N	elation r _u r _c	Alternate Composite	Correl r _u	rc
	AR+	K+E I +GS	S, VE+AR+MC,	VE (Continued)		
			VE+AR+NC	NO+VE+MC+AS	-47	- 59
			-41 -55	CS+AR+MC+MK	-46	_
			VE	MK+MC+EI	-45	-58
			-1 2 -33	AR+EI+MC	-44	-57
				NO+CS+VE+AS	-44	-57
				AR+MC	-44	-57
				VE+AR+NO+CS	-44	-58
				VE+NO+CS	-43	-56
FTG	6413	159	AR+MK+EI+GS	S MK+AS	-26	-42
			-17 -38	AR+MK+AS	-25	-42
			VE+AR+MC	CS+AR+NC+MK	-24	-41
			-10 -34	MK+EI	-24	-41
			VE	AR+MK+MC	-23	-41
			00 -24	MC+MK+AS	-23	-41
				MK+EI+AS	-23	-41
				AR+MK	-23	-41
				MK+MC+EI	-22	-40
				NO+EI+HC+AS	-21	- 39
		VE+	NO+CS, VE+A	R+MC, VE		
RM	606J	156	VE+NO+CS	CS+AR+MC+MK	-45	-62
			-33 -42	AR+MK+MC	-43	-61
			VE+AR+MC	AR+MK+EI+GS	-42	-60
			-37 -58	MK+MC+EI	-42	-60
			<u>ve</u>	MK+EI	-41	-57
			-17 -42	ar+nk+as	-40	-58
				CS+AR+MC+AS	-40	-
				AR+MK	-40	-58
				NO+VE+MC+AS	-39	
				AR+EI+MC	- 39	-58

Table B-3 (Continued)

Rating	Course		lecto mposi elati	te	Alternate Composite	Correlation		
Code	Code	N	r _u	r _c		r _u	r _c	
		VE+NO+CS,	VE+	AR+MC,	VE(Continued)	· · · · · · · · · · · · · · · · · · ·		
RM	606K	58	VE+N	io+cs	AR+MK	-12	-14	
			02	OO	VE+AR	-11	-12	
			VE+A	R+MC	/R+MK+EI+GS	-09	-11	
			-05	-09	MK+EI	-08	-11	
			VE		AR+2MK+GS	-08	-10	
			-04	-08	VE+MK	-08	-10	
					CS+VE+AR	-07	-10	
					AR+MK+MC	-07	-10	
					WK+AR	-07	-09	
					AR+EI+GS	-06	-09	
RM	6352	162	VE+N	10+CS	MK+EI	-4E	-65	
			-26	-40	MK+MC+EI	-47%	-66	
			VE.+	R+MC	CS+AR+MC+MK	-47*	-65	
			-37	-61	AR+MK+EI+GS	-46	-65	
			<u>VE</u>		AR+HK+MC	-46*	-65	
			-11	-43	AR+MK	-43	-63	
					AR+EI+MC	-42	-63	
					MK+EI+GS	-42	-62	
					AR+2MK+GS	-41	- 02	
					AR+MC	-40	-62	

Notes. Decimal points have been omitted from correlations, r_u = Uncorrected validity; r_c =Corrected validity. Validities marked with asterisks are significantly greater than operational composite validities: p<.05, p<.01

DISTRIBUTION LIST

Deputy Assistant Secretary of the Navy (Manpower and Reserve Affairs) (OASN) (M&RA) Chief of Naval Operations (OP-11), (OP-13), (OP-135L), (OP-135C4), (OP-140F2), (OP-987H)

Commander, Naval Military Personnel Command (NMPC-013C), (NMPC-48)

Commander, Navy Recruiting Command (Code 20)

Chief of Naval Education and Training (Code 90A), (Code N-21), (Code N-43)

Commanding Officer, Naval Education and Training Program (Code IPD) (Personnel and Training Research)

Commanding Officer, Naval Training Equipment Center (Technical Library) (5), (Code 1), (Code N-6)

Commanding Officer, Naval Coastal Systems Center

Commandant of the Marine Corps (MPI-20)

Commander, Army Research Institute for the Behavioral and Social Sciences, Alexandria (PERI-ASL), (PERI-ZT), (PERI-SZ)

Headquarters, USMEPCOM/MEPCPAT-A, North Chicago

Commander, Air Force Human Resources Laboratory, Brooks Air Force Base (Manpower and Personnel Division) (2), (Scientific and Technical Information Office), (TSRL/Technical Library), (AFHRL/DOJZ)

Commander, Air Force Human Resources Laboratory, Williams Air Forace Base (AFHRL/OT)

Commander, Air Force Human Resources Laboratory, Wright-Patterson Air Force Base (AFHRL/LR-TDC)

Commanding Oificer, U.S. Coast Guard Research and Development Center, Avery Point Superintendent, Naval Postgraduate School

Director of Research, U.S. Naval Academy

Defense Technical Information Center (DDA) 912)